This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2010 IMO Shortlist, 6

The rows and columns of a $2^n \times 2^n$ table are numbered from $0$ to $2^{n}-1.$ The cells of the table have been coloured with the following property being satisfied: for each $0 \leq i,j \leq 2^n - 1,$ the $j$-th cell in the $i$-th row and the $(i+j)$-th cell in the $j$-th row have the same colour. (The indices of the cells in a row are considered modulo $2^n$.) Prove that the maximal possible number of colours is $2^n$. [i]Proposed by Hossein Dabirian, Sepehr Ghazi-nezami, Iran[/i]

2012 Online Math Open Problems, 22

Find the largest prime number $p$ such that when $2012!$ is written in base $p$, it has at least $p$ trailing zeroes. [i]Author: Alex Zhu[/i]

2020 HK IMO Preliminary Selection Contest, 15

How many ten-digit positive integers consist of ten different digits and are divisible by $99$?

2016 Chile National Olympiad, 1

The natural number $a_n$ is obtained by writing together and ordered, in decimal notation , all natural numbers between $1$ and $n$. So we have for example that $a_1 = 1$,$a_2 = 12$, $a_3 = 123$, $. . .$ , $a_{11} = 1234567891011$, $...$ . Find all values of $n$ for which $a_n$ is not divisible by $3$.

2002 China Western Mathematical Olympiad, 3

Assume that $ \alpha$ and $ \beta$ are two roots of the equation: $ x^2\minus{}x\minus{}1\equal{}0$. Let $ a_n\equal{}\frac{\alpha^n\minus{}\beta^n}{\alpha\minus{}\beta}$, $ n\equal{}1, 2, \cdots$. (1) Prove that for any positive integer $ n$, we have $ a_{n\plus{}2}\equal{}a_{n\plus{}1}\plus{}a_n$. (2) Find all positive integers $ a$ and $ b$, $ a<b$, satisfying $ b \mid a_n\minus{}2na^n$ for any positive integer $ n$.

TNO 2008 Senior, 7

Find all pairs of prime numbers $p$ and $q$ such that: \[ p(p + q) = q^p+ 1. \]

2010 ELMO Shortlist, 1

For a positive integer $n$, let $\mu(n) = 0$ if $n$ is not squarefree and $(-1)^k$ if $n$ is a product of $k$ primes, and let $\sigma(n)$ be the sum of the divisors of $n$. Prove that for all $n$ we have \[\left|\sum_{d|n}\frac{\mu(d)\sigma(d)}{d}\right| \geq \frac{1}{n}, \] and determine when equality holds. [i]Wenyu Cao.[/i]

2024 German National Olympiad, 4

Let $k>2$ be a positive integer such that the $k$-digit number $n_k=133\dots 3$, consisting of a digit $1$ followed by $k-1$ digits $3$ is prime. Show that $24 \mid k(k+2)$.

2020 India National Olympiad, 5

Infinitely many equidistant parallel lines are drawn in the plane. A positive integer $n \geqslant 3$ is called frameable if it is possible to draw a regular polygon with $n$ sides all whose vertices lie on these lines, and no line contains more than one vertex of the polygon. (a) Show that $3, 4, 6$ are frameable. (b) Show that any integer $n \geqslant 7$ is not frameable. (c) Determine whether $5$ is frameable. [i]Proposed by Muralidharan[/i]

1978 IMO, 1

Let $ m$ and $ n$ be positive integers such that $ 1 \le m < n$. In their decimal representations, the last three digits of $ 1978^m$ are equal, respectively, to the last three digits of $ 1978^n$. Find $ m$ and $ n$ such that $ m \plus{} n$ has its least value.

2023 Polish Junior MO Second Round, 3.

A natural number $n$ is at least two digits long. If we write a certain digit between the tens digit and the units digit of this number, we obtain six times the number $n$. Find all numbers $n$ with this property.

2009 Junior Balkan Team Selection Test, 4

In the decimal expression of a $ 2009$-digit natural number there are only the digits $ 5$ and $ 8$. Prove that we can get a $ 2008$-digit number divisible by $ 11$ if we remove just one digit from the number.

2016 Taiwan TST Round 1, 3

Let $\mathbb{Z}^+$ denote the set of all positive integers. Find all surjective functions $f:\mathbb{Z}^+ \times \mathbb{Z}^+ \rightarrow \mathbb{Z}^+$ that satisfy all of the following conditions: for all $a,b,c \in \mathbb{Z}^+$, (i)$f(a,b) \leq a+b$; (ii)$f(a,f(b,c))=f(f(a,b),c)$ (iii)Both $\binom{f(a,b)}{a}$ and $\binom{f(a,b)}{b}$ are odd numbers.(where $\binom{n}{k}$ denotes the binomial coefficients)

1999 Federal Competition For Advanced Students, Part 2, 1

Prove that for each positive integer $n$, the sum of the numbers of digits of $4^n$ and of $25^n$ (in the decimal system) is odd.

2016 Israel National Olympiad, 5

The Fibonacci sequence $F_n$ is defined by $F_1=F_2=1$ and the recurrence relation $F_n=F_{n-1}+F_{n-2}$ for all integers $n\geq3$. Let $m,n\geq1$ be integers. Find the minimal degree $d$ for which there exists a polynomial $f(x)=a_dx^d+a_{d-1}x^{d-1}+\dots+a_1x+a_0$, which satisfies $f(k)=F_{m+k}$ for all $k=0,1,...,n$.

2017 JBMO Shortlist, NT2

Determine all positive integers n such that $n^2/ (n - 1)!$

2019 Taiwan TST Round 3, 4

Let $n>1$ be a positive integer. Each cell of an $n\times n$ table contains an integer. Suppose that the following conditions are satisfied: [list=1] [*] Each number in the table is congruent to $1$ modulo $n$. [*] The sum of numbers in any row, as well as the sum of numbers in any column, is congruent to $n$ modulo $n^2$. [/list] Let $R_i$ be the product of the numbers in the $i^{\text{th}}$ row, and $C_j$ be the product of the number in the $j^{\text{th}}$ column. Prove that the sums $R_1+\hdots R_n$ and $C_1+\hdots C_n$ are congruent modulo $n^4$.

1995 Tuymaada Olympiad, 6

Given a circle of radius $r= 1995$. Show that around it you can describe exactly $16$ primitive Pythagorean triangles. The primitive Pythagorean triangle is a right-angled triangle, the lengths of the sides of which are expressed by coprime integers.

2004 Mid-Michigan MO, 5-6

[b]p1.[/b] On the island of Nevermind some people are liars; they always lie. The remaining habitants of the island are truthlovers; they tell only the truth. Three habitants of the island, $A, B$, and $C$ met this morning. $A$ said: “All of us are liars”. $B$ said: “Only one of us is a truthlover”. Who of them is a liar and who of them is a truthlover? [b]p2.[/b] Pinocchio has $9$ pieces of paper. He is allowed to take a piece of paper and cut it in $5$ pieces or $7$ pieces which increases the number of his pieces. Then he can take again one of his pieces of paper and cut it in $5$ pieces or $7$ pieces. He can do this again and again as many times as he wishes. Can he get $2004$ pieces of paper? [b]p3.[/b] In Dragonland there are coins of $1$ cent, $2$ cents, $10$ cents, $20$ cents, and $50$ cents. What is the largest amount of money one can have in coins, yet still not be able to make exactly $1$ dollar? [b]p4.[/b] Find all solutions $a, b, c, d, e$ if it is known that they represent distinct digits and satisfy the following: $\begin{tabular}{ccccc} & a & b & c & d \\ + & a & c & a & c \\ \hline c & d & e & b & c \\ \end{tabular}$ [b]p5.[/b] Two players play the following game. On the lowest left square of an $8\times 8$ chessboard there is a rook. The first player is allowed to move the rook up or to the right by an arbitrary number of squares. The second player is also allowed to move the rook up or to the right by an arbitrary number of squares. Then the first player is allowed to do this again, and so on. The one who moves the rook to the upper right square wins. Who has a winning strategy? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2022 MOAA, Speed

[b]p1.[/b] What is the value of the sum $2 + 20 + 202 + 2022$? [b]p2.[/b] Find the smallest integer greater than $10000$ that is divisible by $12$. [b]p3.[/b] Valencia chooses a positive integer factor of $6^{10}$ at random. The probability that it is odd can be expressed in the form $\frac{m}{n}$ where $m$ and $n$ are relatively prime integers. Find $m + n$. [b]p4.[/b] How many three digit positive integers are multiples of $4$ but not $8$? [b]p5.[/b] At the Jane Street store, Andy accidentally buys $5$ dollars more worth of shirts than he had planned. Originally, including the tip to the cashier, he planned to spend all of the remaining $90$ dollars on his giftcard. To compensate for his gluttony, Andy instead gives the cashier a smaller, $12.5\%$ tip so that he still spends $90$ dollars total. How much percent tip was Andy originally planning on giving? [b]p6.[/b] Let $A,B,C,D$ be four coplanar points satisfying the conditions $AB = 16$, $AC = BC =10$, and $AD = BD = 17$. What is the minimum possible area of quadrilateral $ADBC$? [b]p7.[/b] How many ways are there to select a set of three distinct points from the vertices of a regular hexagon so that the triangle they form has its smallest angle(s) equal to $30^o$? [b]p8.[/b] Jaeyong rolls five fair $6$-sided die. The probability that the sum of some three rolls is exactly $8$ times the sum of the other two rolls can be expressed as $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$. [b]p9.[/b] Find the least positive integer n for there exists some positive integer $k > 1$ for which $k$ and $k + 2$ both divide $\underbrace{11...1}_{n\,\,\,1's}$. [b]p10.[/b] For some real constant $k$, line $y = k$ intersects the curve $y = |x^4-1|$ four times: points $A$,$B$,$C$ and $D$, labeled from left to right. If $BC = 2AB = 2CD$, then the value of $k$ can be expressed as $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$. [b]p11.[/b] Let a be a positive real number and $P(x) = x^2 -8x+a$ and $Q(x) = x^2 -8x+a+1$ be quadratics with real roots such that the positive difference of the roots of $P(x)$ is exactly one more than the positive difference of the roots of $Q(x)$. The value of a can be written as a common fraction $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m+n$. [b]p12.[/b] Let $ABCD$ be a trapezoid satisfying $AB \parallel CD$, $AB = 3$, $CD = 4$, with area $35$. Given $AC$ and $BD$ intersect at $E$, and $M$, $N$, $P$, $Q$ are the midpoints of segments $AE$,$BE$,$CE$,$DE$, respectively, the area of the intersection of quadrilaterals $ABPQ$ and $CDMN$ can be expressed as $\frac{m}{n}$ where $m, n$ are relatively prime positive integers. Find $m + n$. [b]p13.[/b] There are $8$ distinct points $P_1, P_2, ... , P_8$ on a circle. How many ways are there to choose a set of three distinct chords such that every chord has to touch at least one other chord, and if any two chosen chords touch, they must touch at a shared endpoint? [b]p14.[/b] For every positive integer $k$, let $f(k) > 1$ be defined as the smallest positive integer for which $f(k)$ and $f(k)^2$ leave the same remainder when divided by $k$. The minimum possible value of $\frac{1}{x}f(x)$ across all positive integers $x \le 1000$ can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m, n$. Find $m + n$. [b]p15.[/b] In triangle $ABC$, let $I$ be the incenter and $O$ be the circumcenter. If $AO$ bisects $\angle IAC$, $AB + AC = 21$, and $BC = 7$, then the length of segment $AI$ can be expressed as $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2022 MOAA, Accuracy

[b]p1.[/b] Find the last digit of $2022^{2022}$. [b]p2.[/b] Let $a_1 < a_2 <... < a_8$ be eight real numbers in an increasing arithmetic progression. If $a_1 + a_3 + a_5 + a_7 = 39$ and $a_2 + a_4 + a_6 + a_8 = 40$, determine the value of $a_1$. [b]p3.[/b] Patrick tries to evaluate the sum of the first $2022$ positive integers, but accidentally omits one of the numbers, $N$, while adding all of them manually, and incorrectly arrives at a multiple of $1000$. If adds correctly otherwise, find the sum of all possible values of $N$. [b]p4.[/b] A machine picks a real number uniformly at random from $[0, 2022]$. Andrew randomly chooses a real number from $[2020, 2022]$. The probability that Andrew’s number is less than the machine’s number is $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$. [b]p5.[/b] Let $ABCD$ be a square and $P$ be a point inside it such that the distances from $P$ to sides $AB$ and $AD$ respectively are $2$ and $4$, while $PC = 6$. If the side length of the square can be expressed in the form $a +\sqrt{b}$ for positive integers $a, b$, then determine $a + b$. [b]p6.[/b] Positive integers $a_1, a_2, ..., a_{20}$ sum to $57$. Given that $M$ is the minimum possible value of the quantity $a_1!a_2!...a_{20}!$, find the number of positive integer divisors of $M$. [b]p7.[/b] Jessica has $16$ balls in a box, where $15$ of them are red and one is blue. Jessica draws balls out the box three at a time until one of the three is blue. If she ever draws three red marbles, she discards one of them and shuffles the remaining two back into the box. The expected number of draws it takes for Jessica to draw the blue ball can be written as a common fraction $\frac{m}{n}$ where $m, n$ are relatively prime positive integers. Find $m + n$. [b]p8.[/b] The Lucas sequence is defined by these conditions: $L_0 = 2$, $L_1 = 1$, and $L_{n+2} =L_{n+1} +L_n$ for all $n \ge 0$. Determine the remainder when $L^2_{2019} +L^2_{2020}$ is divided by $L_{2023}$. [b]p9.[/b] Let $ABCD$ be a parallelogram. Point $P$ is selected in its interior such that the distance from $P$ to $BC$ is exactly $6$ times the distance from $P$ to $AD$, and $\angle APB = \angle CPD = 90^o$. Given that $AP = 2$ and $CP = 9$, the area of $ABCD$ can be expressed as $m\sqrt{n}$ where $m$ and $n$ are positive integers and $n$ is not divisible by the square of any prime. Find $m + n$. [b]p10.[/b] Consider the polynomial $P(x) = x^{35} + ... + x + 1$. How many pairs $(i, j)$ of integers are there with $0 \le i < j \le 35$ such that if we flip the signs of the $x^i$ and $x^j$ terms in $P(x)$ to form a new polynomial $Q(x)$, then there exists a nonconstant polynomial $R(x)$ with integer coefficients dividing both $P(x)$ and $Q(x)$? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2017 Bundeswettbewerb Mathematik, 4

The sequence $a_0,a_1,a_2,\dots$ is recursively defined by \[ a_0 = 1 \quad \text{and} \quad a_n = a_{n-1} \cdot \left(4-\frac{2}{n} \right) \quad \text{for } n \geq 1. \] Prove for each integer $n \geq 1$: (a) The number $a_n$ is a positive integer. (b) Each prime $p$ with $n < p \leq 2n$ is a divisor of $a_n$. (c) If $n$ is a prime, then $a_n-2$ is divisible by $n$.

2005 IMC, 2

Let $f: \mathbb{R}\to\mathbb{R}$ be a function such that $(f(x))^{n}$ is a polynomial for every integer $n\geq 2$. Is $f$ also a polynomial?

2012 APMO, 3

Determine all the pairs $ (p , n )$ of a prime number $ p$ and a positive integer $ n$ for which $ \frac{ n^p + 1 }{p^n + 1} $ is an integer.

1991 Putnam, B5

Let $p>2$ be a prime. How many residues $\pmod p$ are both squares and squares plus one?