This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2024 Lusophon Mathematical Olympiad, 2

For each set of five integers $S= \{a_1, a_2, a_3, a_4, a_5\} $, let $P_S$ be the product of all differences between two of the elements, namely $$P_S=(a_5-a_1)(a_4-a_1)(a_3-a_1)(a_2-a_1)(a_5-a_2)(a_4-a_2)(a_3-a_2)(a_5-a_3)(a_4-a_3)(a_5-a_4)$$ Determine the greatest integer $n$ such that given any set $S$ of five integers, $n$ divides $P_S$.

2016 Peru IMO TST, 9

Let $\mathbb{Z}_{>0}$ denote the set of positive integers. For any positive integer $k$, a function $f: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ is called [i]$k$-good[/i] if $\gcd(f(m) + n, f(n) + m) \le k$ for all $m \neq n$. Find all $k$ such that there exists a $k$-good function. [i]Proposed by James Rickards, Canada[/i]

2013 German National Olympiad, 6

Define a sequence $(a_n)$ by $a_1 =1, a_2 =2,$ and $a_{k+2}=2a_{k+1}+a_k$ for all positive integers $k$. Determine all real numbers $\beta >0$ which satisfy the following conditions: (A) There are infinitely pairs of positive integers $(p,q)$ such that $\left| \frac{p}{q}- \sqrt{2} \, \right| < \frac{\beta}{q^2 }.$ (B) There are only finitely many pairs of positive integers $(p,q)$ with $\left| \frac{p}{q}- \sqrt{2} \,\right| < \frac{\beta}{q^2 }$ for which there is no index $k$ with $q=a_k.$

2005 IMO Shortlist, 7

Let $P(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+\ldots+a_{0}$, where $a_{0},\ldots,a_{n}$ are integers, $a_{n}>0$, $n\geq 2$. Prove that there exists a positive integer $m$ such that $P(m!)$ is a composite number.

2007 Germany Team Selection Test, 2

Find all quadruple $ (m,n,p,q) \in \mathbb{Z}^4$ such that \[ p^m q^n \equal{} (p\plus{}q)^2 \plus{} 1.\]

1998 Portugal MO, 1

A chicken breeder went to check what price per chick he had charged the previous year. He found an invoice, half erased, which read: $72$ chickens sold for $*679*$ escudos” (the digits of the units and tens of thousands were illegible). What price did each chick sell for last year?

2017 Romania Team Selection Test, P4

Given a positive odd integer $n$, show that the arithmetic mean of fractional parts $\{\frac{k^{2n}}{p}\}, k=1,..., \frac{p-1}{2}$ is the same for infinitely many primes $p$ .

2011 Estonia Team Selection Test, 5

Prove that if $n$ and $k$ are positive integers such that $1<k<n-1$,Then the binomial coefficient $\binom nk$ is divisible by at least two different primes.

2018 Hong Kong TST, 3

Find all primes $p$ and all positive integers $a$ and $m$ such that $a\leq 5p^2$ and $(p-1)!+a=p^m$

1999 Cono Sur Olympiad, 4

Let $A$ be a six-digit number, three of which are colored and equal to $1, 2$, and $4$. Prove that it is always possible to obtain a number that is a multiple of $7$, by performing only one of the following operations: either delete the three colored figures, or write all the numbers of $A$ in some order.

MMPC Part II 1996 - 2019, 1999

[b]p1.[/b] The final Big $10$ standings for the $1996$ Women's Softball season were 1. Michigan 2. Minnesota З. Iowa 4. Indiana 5. Michigan State 6. Purdue 7. Northwestern 8. Ohio State 9. Penn State 10. Wisconsin (Illinois does not participate in Women's Softball.) When you compare the $1996$ final standings (above) to the final standings for the $1999$ season, you find that the following pairs of teams changed order relative to each other from $1996$ to $1999$ (there are no ties, and no other pairs changed places): (Iowa, Michigan State) (Indiana, Penn State) (Purdue, Wisconsin) (Iowa, Penn State) (Indiana, Wisconsin) (Northwestern, Penn State) (Indiana, Michigan State) (Michigan State, Penn State) (Northwestern, Wisconsin) (Indiana, Purdue) (Purdue, Northwestern) (Ohio State, Penn State) (Indiana, Northwestern) (Purdue, Penn State) (Ohio State, Penn State) (Indiana, Ohio State) Determine as much as you can about the final Big $10$ standings for the $1999$ Women's Softball season. If you cannot determine the standings, explain why you do not have enough information. You must justify your answer. [b]p2.[/b] a) Take as a given that any expression of the form $A \sin t + B \cos t$ ($A>0$) can be put in the form $C \sin (t + D)$, where $C>0$ and $-\pi /2 <D <\pi /2 $. Determine $C$ and $D$ in terms of $A$ and $B$. b) For the values of $C$ and $D$ found in part a), prove that $A \sin t + B \cos t = C \sin (t + D)$. c) Find the maximum value of $3 \sin t +2 \cos t$. [b]pЗ.[/b] А $6$-bу-$6$ checkerboard is completelу filled with $18$ dominoes (blocks of size $1$-bу-$2$). Prove that some horizontal or vertical line cuts the board in two parts but does not cut anу of the dominoes. [b]p4.[/b] a) The midpoints of the sides of a regular hexagon are the vertices of a new hexagon. What is the ratio of the area of the new hexagon to the area of the original hexagon? Justify your answer and simplify as much as possible. b) The midpoints of the sides of a regular $n$-gon ($n >2$) are the vertices of a new $n$-gon. What is the ratio of the area of the new $n$-gon to that of the old? Justify your answer and simplify as much as possible. [b]p5. [/b] You run a boarding house that has $90$ rooms. You have $100$ guests registered, but on any given night only $90$ of these guests actually stay in the boarding house. Each evening a different random set of $90$ guests will show up. You don't know which $90$ it will be, but they all arrive for dinner before you have to assign rooms for the night. You want to give out keys to your guests so that for any set of $90$ guests, you can assign each to a private room without any switching of keys. a) You could give every guest a key to every room. But this requires $9000$ keys. Find a way to hand out fewer than $9000$ keys so that each guest will have a key to a private room. b) What is the smallest number of keys necessary so that each guest will have a key to a private room? Describe how you would distribute these keys and assign the rooms. Prove that this number of keys is as small as possible. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2016 South East Mathematical Olympiad, 5

Let $n$ is positive integer, $D_n$ is a set of all positive divisor of $n$ and $f(n)=\sum_{d\in D_n}{\frac{1}{1+d}}$ Prove that for all positive integer $m$, $\sum_{i=1}^{m}{f(i)} <m$

2020 CHMMC Winter (2020-21), 3

For two base-10 positive integers $a$ and $b$, we say $a \sim b$ if we can rearrange the digits of $a$ in some way to obtain $b$, where the leading digit of both $a$ and $b$ is nonzero. For instance, $463 \sim 463$ and $634 \sim 463$. Find the number of $11$-digit positive integers $K$ such that $K$ is divisible by $2$, $3$, and $5$, and there is some positive integer $K'$ such that $K' \sim K$ and $K'$ is divisible by $7$, $11$, $13$, $17$, $101$, and $9901$.

2002 All-Russian Olympiad Regional Round, 9.5

Is it possible to arrange the numbers $1, 2, . . . , 60$ in that order, so that the sum of any two numbers between which there is one number, divisible by $2$, the sum of any two numbers between which there are two numbers divisible by $3$, . . . , the sum of any two numbers between which there is are there six numbers, divisible by $7$?

2023 ITAMO, 3

Let $s(n)$ denote the sum of the digits of $n$. a) Do there exist distinct positive integers $a, b$, such that $2023a+s(a)=2023b+s(b)$? b) Do there exist distinct positive integers $a, b$, such that $a+2023s(a)=b+2023s(b)$?

2024 Israel Olympic Revenge, P1

Find all primes $p$, so that for every prime $q<p$ and $x\in \mathbb{Z}$ one has $p\nmid x^2-q$.

2016 Latvia National Olympiad, 1

Given that $x$ and $y$ are positive integers such that $xy^{433}$ is a perfect 2016-power of a positive integer, prove that $x^{433}y$ is also a perfect 2016-power.

2009 Bosnia and Herzegovina Junior BMO TST, 1

Lengths of sides of triangle $ABC$ are positive integers, and smallest side is equal to $2$. Determine the area of triangle $P$ if $v_c = v_a + v_b$, where $v_a$, $v_b$ and $v_c$ are lengths of altitudes in triangle $ABC$ from vertices $A$, $B$ and $C$, respectively.

2024 Canada National Olympiad, 2

Jane writes down $2024$ natural numbers around the perimeter of a circle. She wants the $2024$ products of adjacent pairs of numbers to be exactly the set $\{ 1!, 2!, \ldots, 2024! \}.$ Can she accomplish this?

2000 Kazakhstan National Olympiad, 5

Let the number $ p $ be a prime divisor of the number $ 2 ^ {2 ^ k} + 1 $. Prove that $ p-1 $ is divisible by $ 2 ^ {k + 1} $.

2006 Germany Team Selection Test, 1

For any positive integer $n$, let $w\left(n\right)$ denote the number of different prime divisors of the number $n$. (For instance, $w\left(12\right)=2$.) Show that there exist infinitely many positive integers $n$ such that $w\left(n\right)<w\left(n+1\right)<w\left(n+2\right)$.

2014 Dutch Mathematical Olympiad, 4

A quadruple $(p, a, b, c)$ of positive integers is called a Leiden quadruple if - $p$ is an odd prime number, - $a, b$, and $c$ are distinct and - $ab + 1, bc + 1$ and $ca + 1$ are divisible by $p$. a) Prove that for every Leiden quadruple $(p, a, b, c)$ we have $p + 2 \le \frac{a+b+c}{3}$ . b) Determine all numbers $p$ for which a Leiden quadruple $(p, a, b, c)$ exists with $p + 2 = \frac{a+b+c}{3} $

2023 Harvard-MIT Mathematics Tournament, 8

Let $S$ be the set of ordered pairs $(a, b)$ of positive integers such that $\gcd(a, b) = 1$. Compute \[ \sum_{(a, b) \in S} \left\lfloor \frac{300}{2a+3b} \right\rfloor. \]

2001 Federal Competition For Advanced Students, Part 2, 2

Determine all integers $m$ for which all solutions of the equation $3x^3-3x^2+m = 0$ are rational.

2006 Estonia National Olympiad, 2

Let $a, b$ and $c$ be positive integers such that $ab + 1, bc + 1$ and $ca + 1$ are all integer squares. a) Give an example of such numbers $a, b$ and $c$. b) Prove that at least one of the numbers $a, b$ and $c$ is divisible by $4$