This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2019 Balkan MO Shortlist, A1

Let $a_0$ be an arbitrary positive integer. Consider the infinite sequence $(a_n)_{n\geq 1}$, defined inductively as follows: given $a_0, a_1, ..., a_{n-1}$ define the term $a_n$ as the smallest positive integer such that $a_0+a_1+...+a_n$ is divisible by $n$. Prove that there exist a positive integer a positive integer $M$ such that $a_{n+1}=a_n$ for all $n\geq M$.

1965 German National Olympiad, 2

Determine which of the prime numbers $2,3,5,7,11,13,109,151,491$ divide $z =1963^{1965} -1963$.

2014 Contests, 1

Let $f : \mathbb{Z} \rightarrow \mathbb{Z}^+$ be a function, and define $h : \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}^+$ by $h(x, y) = \gcd (f(x), f(y))$. If $h(x, y)$ is a two-variable polynomial in $x$ and $y$, prove that it must be constant.

2011 Tournament of Towns, 5

We will call a positive integer [i]good [/i] if all its digits are nonzero. A good integer will be called [i]special [/i] if it has at least $k$ digits and their values strictly increase from left to right. Let a good integer be given. At each move, one may either add some special integer to its digital expression from the left or from the right, or insert a special integer between any two its digits, or remove a special number from its digital expression.What is the largest $k$ such that any good integer can be turned into any other good integer by such moves?

2017 IFYM, Sozopol, 3

A row of $2n$ real numbers is called [i]“Sozopolian”[/i], if for each $m$, such that $1\leq m\leq 2n$, the sum of the first $m$ members of the row is an integer or the sum of the last $m$ members of the row is an integer. What’s the least number of integers that a [i]Sozopolian[/i] row can have, if the number of its members is: a) 2016; b) 2017?

1977 IMO, 2

Let $a,b$ be two natural numbers. When we divide $a^2+b^2$ by $a+b$, we the the remainder $r$ and the quotient $q.$ Determine all pairs $(a, b)$ for which $q^2 + r = 1977.$

2023 German National Olympiad, 1

Determine all pairs $(m,n)$ of integers with $n \ge m$ satisfying the equation \[n^3+m^3-nm(n+m)=2023.\]

2009 Purple Comet Problems, 14

Let $ABCD$ be a trapezoid with $AB$ parallel to $CD, AB$ has length $1,$ and $CD$ has length $41.$ Let points $X$ and $Y$ lie on sides $AD$ and $BC,$ respectively, such that $XY$ is parallel to $AB$ and $CD,$ and $XY$ has length $31.$ Let $m$ and $n$ be two relatively prime positive integers such that the ratio of the area of $ABYX$ to the area of $CDXY$ is $\tfrac{m}{n}.$ Find $m+2n.$

KoMaL A Problems 2024/2025, A. 903

Let the irrational number \[\alpha =1-\cfrac{1}{2a_1-\cfrac{1}{2a_2-\cfrac{1}{2a_3-\cdots}}}\] where coefficients $a_1, a_2, \ldots$ are positive integers, infinitely many of which are greater than $1$. Prove that for every positive integer $N$ at least half of the numbers $\lfloor \alpha\rfloor, \lfloor 2\alpha\rfloor, \ldots, \lfloor N\alpha\rfloor$ are even. [i]Proposed by Géza Kós, Budapest[/i]

2012 BMT Spring, Championship

[b]p1.[/b] If $n$ is a positive integer such that $2n+1 = 144169^2$, find two consecutive numbers whose squares add up to $n + 1$. [b]p2.[/b] Katniss has an $n$-sided fair die which she rolls. If $n > 2$, she can either choose to let the value rolled be her score, or she can choose to roll a $n - 1$ sided fair die, continuing the process. What is the expected value of her score assuming Katniss starts with a $6$ sided die and plays to maximize this expected value? [b]p3.[/b] Suppose that $f(x) = x^6 + ax^5 + bx^4 + cx^3 + dx^2 + ex + f$, and that $f(1) = f(2) = f(3) = f(4) = f(5) = f(6) = 7$. What is $a$? [b]p4.[/b] $a$ and $b$ are positive integers so that $20a+12b$ and $20b-12a$ are both powers of $2$, but $a+b$ is not. Find the minimum possible value of $a + b$. [b]p5.[/b] Square $ABCD$ and rhombus $CDEF$ share a side. If $m\angle DCF = 36^o$, find the measure of $\angle AEC$. [b]p6.[/b] Tom challenges Harry to a game. Tom first blindfolds Harry and begins to set up the game. Tom places $4$ quarters on an index card, one on each corner of the card. It is Harry’s job to flip all the coins either face-up or face-down using the following rules: (a) Harry is allowed to flip as many coins as he wants during his turn. (b) A turn consists of Harry flipping as many coins as he wants (while blindfolded). When he is happy with what he has flipped, Harry will ask Tom whether or not he was successful in flipping all the coins face-up or face-down. If yes, then Harry wins. If no, then Tom will take the index card back, rotate the card however he wants, and return it back to Harry, thus starting Harry’s next turn. Note that Tom cannot touch the coins after he initially places them before starting the game. Assuming that Tom’s initial configuration of the coins weren’t all face-up or face-down, and assuming that Harry uses the most efficient algorithm, how many moves maximum will Harry need in order to win? Or will he never win? PS. You had better use hide for answers.

2011 Mongolia Team Selection Test, 1

Let $A=\{a^2+13b^2 \mid a,b \in\mathbb{Z}, b\neq0\}$. Prove that there a) exist b) exist infinitely many $x,y$ integer pairs such that $x^{13}+y^{13} \in A$ and $x+y \notin A$. (proposed by B. Bayarjargal)

2002 Putnam, 5

Define a sequence by $a_0=1$, together with the rules $a_{2n+1}=a_n$ and $a_{2n+2}=a_n+a_{n+1}$ for each integer $n\ge0$. Prove that every positive rational number appears in the set $ \left\{ \tfrac {a_{n-1}}{a_n}: n \ge 1 \right\} = \left\{ \tfrac {1}{1}, \tfrac {1}{2}, \tfrac {2}{1}, \tfrac {1}{3}, \tfrac {3}{2}, \cdots \right\} $.

1999 Mongolian Mathematical Olympiad, Problem 1

Prove that for any positive integer $k$ there exist infinitely many positive integers $m$ such that $3^k\mid m^3+10$.

Kvant 2024, M2795

Is it possible to release a ray on a plane from each point with rational coordinates so that no two rays have a common point and at the same time, among the lines containing these rays, no two are parallel and do not coincide? [i]Proposed by P. Kozhevnikov[/i]

2022 LMT Fall, 2 World Cup

The World Cup, featuring $17$ teams from Europe and South America, as well as $15$ other teams that honestly don’t have a chance, is a soccer tournament that is held once every four years. As we speak, Croatia andMorocco are locked in a battle that has no significance whatsoever on the winner, but if you would like live score updates nonetheless, feel free to ask your proctor, who has no obligation whatsoever to provide them. [b]p1.[/b] During the group stage of theWorld Cup, groups of $4$ teams are formed. Every pair of teams in a group play each other once. Each team earns $3$ points for each win and $1$ point for each tie. Find the greatest possible sum of the points of each team in a group. [b]p2.[/b] In the semi-finals of theWorld Cup, the ref is bad and lets $11^2 = 121$ players per team go on the field at once. For a given team, one player is a goalie, and every other player is either a defender, midfielder, or forward. There is at least one player in each position. The product of the number of defenders, midfielders, and forwards is a mulitple of $121$. Find the number of ordered triples (number of defenders, number of midfielders, number of forwards) that satisfy these conditions. [b]p3.[/b] Messi is playing in a game during the Round of $16$. On rectangular soccer field $ABCD$ with $AB = 11$, $BC = 8$, points $E$ and $F$ are on segment $BC$ such that $BE = 3$, $EF = 2$, and $FC = 3$. If the distance betweenMessi and segment $EF$ is less than $6$, he can score a goal. The area of the region on the field whereMessi can score a goal is $a\pi +\sqrt{b} +c$, where $a$, $b$, and $c$ are integers. Find $10000a +100b +c$. [b]p4.[/b] The workers are building theWorld Cup stadium for the $2022$ World Cup in Qatar. It would take 1 worker working alone $4212$ days to build the stadium. Before construction started, there were 256 workers. However, each day after construction, $7$ workers disappear. Find the number of days it will take to finish building the stadium. [b]p5.[/b] In the penalty kick shootout, $2$ teams each get $5$ attempts to score. The teams alternate shots and the team that scores a greater number of times wins. At any point, if it’s impossible for one team to win, even before both teams have taken all $5$ shots, the shootout ends and nomore shots are taken. If each team does take all $5$ shots and afterwards the score is tied, the shootout enters sudden death, where teams alternate taking shots until one team has a higher score while both teams have taken the same number of shots. If each shot has a $\frac12$ chance of scoring, the expected number of times that any team scores can be written as $\frac{A}{B}$ for relatively prime positive integers $A$ and $B$. Find $1000A+B$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2013 LMT, Team Round

[b]p1.[/b] Alan leaves home when the clock in his cardboard box says $7:35$ AM and his watch says $7:41$ AM. When he arrives at school, his watch says $7:47$ AM and the $7:45$ AM bell rings. Assuming the school clock, the watch, and the home clock all go at the same rate, how many minutes behind the school clock is the home clock? [b]p2.[/b] Compute $$\left( \frac{2012^{2012-2013} + 2013}{2013} \right) \times 2012.$$ Express your answer as a mixed number. [b]p3.[/b] What is the last digit of $$2^{3^{4^{5^{6^{7^{8^{9^{...^{2013}}}}}}}}} ?$$ [b]p4.[/b] Let $f(x)$ be a function such that $f(ab) = f(a)f(b)$ for all positive integers $a$ and $b$. If $f(2) = 3$ and $f(3) = 4$, find $f(12)$. [b]p5.[/b] Circle $X$ with radius $3$ is internally tangent to circle $O$ with radius $9$. Two distinct points $P_1$ and $P_2$ are chosen on $O$ such that rays $\overrightarrow{OP_1}$ and $\overrightarrow{OP_2}$ are tangent to circle $X$. What is the length of line segment $P_1P_2$? [b]p6.[/b] Zerglings were recently discovered to use the same $24$-hour cycle that we use. However, instead of making $12$-hour analog clocks like humans, Zerglings make $24$-hour analog clocks. On these special analog clocks, how many times during $ 1$ Zergling day will the hour and minute hands be exactly opposite each other? [b]p7.[/b] Three Small Children would like to split up $9$ different flavored Sweet Candies evenly, so that each one of the Small Children gets $3$ Sweet Candies. However, three blind mice steal one of the Sweet Candies, so one of the Small Children can only get two pieces. How many fewer ways are there to split up the candies now than there were before, assuming every Sweet Candy is different? [b]p8.[/b] Ronny has a piece of paper in the shape of a right triangle $ABC$, where $\angle ABC = 90^o$, $\angle BAC = 30^o$, and $AC = 3$. Holding the paper fixed at $A$, Ronny folds the paper twice such that after the first fold, $\overline{BC}$ coincides with $\overline{AC}$, and after the second fold, $C$ coincides with $A$. If Ronny initially marked $P$ at the midpoint of $\overline{BC}$, and then marked $P'$ as the end location of $P$ after the two folds, find the length of $\overline{PP'}$ once Ronny unfolds the paper. [b]p9.[/b] How many positive integers have the same number of digits when expressed in base $3$ as when expressed in base $4$? [b]p10.[/b] On a $2 \times 4$ grid, a bug starts at the top left square and arbitrarily moves north, south, east, or west to an adjacent square that it has not already visited, with an equal probability of moving in any permitted direction. It continues to move in this way until there are no more places for it to go. Find the expected number of squares that it will travel on. Express your answer as a mixed number. PS. You had better use hide for answers.

2024 Czech-Polish-Slovak Junior Match, 2

How many non-empty subsets of $\{1,2,\dots,11\}$ are there with the property that the product of its elements is the cube of an integer?

2024 Korea Winter Program Practice Test, Q4

Show that there are infinitely many positive odd integers $n$ such that $n^5+2n+1$ is expressible as a sum of squares of two coprime integers.

2007 All-Russian Olympiad, 7

For an integer $n>3$ denote by $n?$ the product of all primes less than $n$. Solve the equation $n?=2n+16$. [i]V. Senderov [/i]

2019 Romania Team Selection Test, 1

Let $k\geq 2$,$n_1,n_2,\cdots ,n_k\in \mathbb{N}_+$,satisfied $n_2|2^{n_1}-1,n_3|2^{n_2}-1,\cdots ,n_k|2^{n_{k-1}}-1,n_1|2^{n_k}-1$. Prove:$n_ 1=n_ 2=\cdots=n_k=1$.

Kvant 2019, M2549

For each non-negative integer $n$ find the sum of all $n$-digit numbers with the digits in a decreasing sequence. [I]Proposed by P. Kozhevnikov[/I]

2017 China Team Selection Test, 4

Given integer $d>1,m$,prove that there exists integer $k>l>0$, such that $$(2^{2^k}+d,2^{2^l}+d)>m.$$

2011 Saint Petersburg Mathematical Olympiad, 2

$a,b$ are naturals and $$a \times GCD(a,b)+b \times LCM(a,b)<2.5 ab$$. Prove that $b|a$

2012 China Girls Math Olympiad, 7

Let $\{a_n\}$ be a sequence of nondecreasing positive integers such that $\textstyle\frac{r}{a_r} = k+1$ for some positive integers $k$ and $r$. Prove that there exists a positive integer $s$ such that $\textstyle\frac{s}{a_s} = k$.

1996 Taiwan National Olympiad, 5

Dertemine integers $a_{1},a_{2},...,a_{99}=a_{0}$ satisfying $|a_{k}-a_{k-1}|\geq 1996$ for all $k=1,2,...,99$, such that $m=\max_{1\leq k\leq 99} |a_{k}-a_{k-1}|$ is minimum possible, and find the minimum value $m^{*}$ of $m$.