This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2003 CHKMO, 4

Let $p$ be a prime number such that $p\equiv 1\pmod{4}$. Determine $\sum_{k=1}^{\frac{p-1}{2}}\left \lbrace \frac{k^2}{p} \right \rbrace$, where $\{x\}=x-[x]$.

2016 China Team Selection Test, 2

In the coordinate plane the points with both coordinates being rational numbers are called rational points. For any positive integer $n$, is there a way to use $n$ colours to colour all rational points, every point is coloured one colour, such that any line segment with both endpoints being rational points contains the rational points of every colour?

2010 Contests, 2

For a positive integer $k,$ call an integer a $pure$ $k-th$ $power$ if it can be represented as $m^k$ for some integer $m.$ Show that for every positive integer $n,$ there exists $n$ distinct positive integers such that their sum is a pure $2009-$th power and their product is a pure $2010-$th power.

2003 Abels Math Contest (Norwegian MO), 2b

Let $a_1,a_2,...,a_n$ be $n$ different positive integers where $n\ge 1$. Show that $$\sum_{i=1}^n a_i^3 \ge \left(\sum_{i=1}^n a_i\right)^2$$

1991 IMO Shortlist, 14

Let $ a, b, c$ be integers and $ p$ an odd prime number. Prove that if $ f(x) \equal{} ax^2 \plus{} bx \plus{} c$ is a perfect square for $ 2p \minus{} 1$ consecutive integer values of $ x,$ then $ p$ divides $ b^2 \minus{} 4ac.$

2008 JBMO Shortlist, 9

Let $p$ be a prime number. Find all positive integers $a$ and $b$ such that: $\frac{4a + p}{b}+\frac{4b + p}{a}$ and $ \frac{a^2}{b}+\frac{b^2}{a}$ are integers.

2018 JBMO TST-Turkey, 2

Two distinct positive integers are called "relatively consistent" if the larger one can be written as a sum of some distinct positive divisors of the other one. Show that there exist 2018 positive integers such that any two of them are "relatively consistent"

2011 IMAC Arhimede, 5

Solve in set of integers the following equation $x^5+y^5+z^5+t^5=93$.

2010 Lithuania National Olympiad, 4

Decimal digits $a,b,c$ satisfy \[ 37\mid (a0a0\ldots a0b0c0c\ldots 0c)_{10} \] where there are $1001$ a's and $1001$ c's. Prove that $b=a+c$.

2014 Junior Balkan Team Selection Tests - Romania, 2

Determine all pairs $(a, b)$ of integers which satisfy the equality $\frac{a + 2}{b + 1} +\frac{a + 1}{b + 2} = 1 +\frac{6}{a + b + 1}$

2021 Turkey Team Selection Test, 7

Given a triangle $ABC$ with the circumcircle $\omega$ and incenter $I$. Let the line pass through the point $I$ and the intersection of exterior angle bisector of $A$ and $\omega$ meets the circumcircle of $IBC$ at $T_A$ for the second time. Define $T_B$ and $T_C$ similarly. Prove that the radius of the circumcircle of the triangle $T_AT_BT_C$ is twice the radius of $\omega$.

1993 IMO Shortlist, 5

Let $S$ be the set of all pairs $(m,n)$ of relatively prime positive integers $m,n$ with $n$ even and $m < n.$ For $s = (m,n) \in S$ write $n = 2^k \cdot n_o$ where $k, n_0$ are positive integers with $n_0$ odd and define \[ f(s) = (n_0, m + n - n_0). \] Prove that $f$ is a function from $S$ to $S$ and that for each $s = (m,n) \in S,$ there exists a positive integer $t \leq \frac{m+n+1}{4}$ such that \[ f^t(s) = s, \] where \[ f^t(s) = \underbrace{ (f \circ f \circ \cdots \circ f) }_{t \text{ times}}(s). \] If $m+n$ is a prime number which does not divide $2^k - 1$ for $k = 1,2, \ldots, m+n-2,$ prove that the smallest value $t$ which satisfies the above conditions is $\left [\frac{m+n+1}{4} \right ]$ where $\left[ x \right]$ denotes the greatest integer $\leq x.$

2011 IFYM, Sozopol, 1

Prove that for $\forall n>1$, $n\in \mathbb{N}$ , there exist infinitely many pairs of positive irrational numbers $a$ and $b$, such that $a^n=b$.

2017 Middle European Mathematical Olympiad, 4

Determine the smallest possible value of $$|2^m - 181^n|,$$ where $m$ and $n$ are positive integers.

2014 Switzerland - Final Round, 9

The sequence of integers $a_1, a_2, ,,$ is defined as follows: $$a_n=\begin{cases} 0\,\,\,\, if\,\,\,\, n\,\,\,\, has\,\,\,\, an\,\,\,\, even\,\,\,\, number\,\,\,\, of\,\,\,\, divisors\,\,\,\, greater\,\,\,\, than\,\,\,\, 2014 \\ 1 \,\,\,\, if \,\,\,\, n \,\,\,\, has \,\,\,\, an \,\,\,\, odd \,\,\,\, number \,\,\,\, of \,\,\,\, divisors \,\,\,\, greater \,\,\,\, than \,\,\,\, 2014\end{cases}$$ Show that the sequence $a_n$ never becomes periodic.

2020 Federal Competition For Advanced Students, P1, 4

Determine all positive integers $N$ such that $$2^N-2N$$ is a perfect square. (Walther Janous)

2019 Simon Marais Mathematical Competition, B2

For each odd prime number $p$, prove that the integer $$1!+2!+3!+\cdots +p!-\left\lfloor \frac{(p-1)!}{e}\right\rfloor$$is divisible by $p$ (Here, $e$ denotes the base of the natural logarithm and $\lfloor x\rfloor$ denotes the largest integer that is less than or equal to $x$.)

2002 Cono Sur Olympiad, 5

Consider the set $A = \{1, 2, ..., n\}$. For each integer $k$, let $r_k$ be the largest quantity of different elements of $A$ that we can choose so that the difference between two numbers chosen is always different from $k$. Determine the highest value possible of $r_k$, where $1 \le k \le \frac{n}{2}$

2002 Italy TST, 2

Prove that for each prime number $p$ and positive integer $n$, $p^n$ divides \[\binom{p^n}{p}-p^{n-1}. \]

2017 AIME Problems, 9

Let $a_{10} = 10$, and for each integer $n >10$ let $a_n = 100a_{n - 1} + n$. Find the least $n > 10$ such that $a_n$ is a multiple of $99$.

2022 Girls in Math at Yale, Tiebreaker

[b]p1.[/b] Suppose that $x$ and $y$ are positive real numbers such that $\log_2 x = \log_x y = \log_y 256$. Find $xy$. [b]p2.[/b] Let the roots of $x^2 + 7x + 11$ be $r$ and $s$. If f(x) is the monic polynomial with roots $rs + r + s$ and $r^2 + s^2$, what is $f(3)$? [b]p3.[/b] Call a positive three digit integer $\overline{ABC}$ fancy if $\overline{ABC} = (\overline{AB})^2 - 11 \cdot \overline{C}$. Find the sum of all fancy integers. [b]p4.[/b] In triangle $ABC$, points $D$ and $E$ are on line segments $BC$ and $AC$, respectively, such that $AD$ and $BE$ intersect at $H$. Suppose that $AC = 12$, $BC = 30$, and $EC = 6$. Triangle $BEC$ has area $45$ and triangle $ADC$ has area $72$, and lines $CH$ and $AB$ meet at $F$. If $BF^2$ can be expressed as $\frac{a-b\sqrt{c}}{d}$ for positive integers $a$, $b$, $c$, $d$ with $c$ squarefree and $gcd(a, b, d) = 1$, then find $a + b + c + d$. [b]p5.[/b] Find the minimum possible integer $y$ such that $y > 100$ and there exists a positive integer $x$ such that $x^2 + 18x + y$ is a perfect fourth power. [b]p6.[/b] Let $ABCD$ be a quadrilateral such that $AB = 2$, $CD = 4$, $BC = AD$, and $\angle ADC + \angle BCD = 120^o$. If the sum of the maximum and minimum possible areas of quadrilateral $ABCD$ can be expressed as $a\sqrt{b}$ for positive integers $a, b$ with $b$ squarefree, then find $a + b$. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1991 Romania Team Selection Test, 4

A sequence $(a_n)$ of positive integers satisfies$(a_m,a_n) = a_{(m,n)}$ for all $m,n$. Prove that there is a unique sequence $(b_n)$ of positive integers such that $a_n = \prod_{d|n} b_d$

2017 IOM, 5

Let $x $ and $y $ be positive integers such that $[x+2,y+2]-[x+1,y+1]=[x+1,y+1]-[x,y]$.Prove that one of the two numbers $x $ and $y $ divide the other. (Here $[a,b] $ denote the least common multiple of $a $ and $b $). Proposed by Dusan Djukic.

Russian TST 2019, P1

A positive integer $n{}$ is called [i]discontinuous[/i] if for all its natural divisors $1 = d_0 < d_1 <\cdots<d_k$, written out in ascending order, there exists $1 \leqslant i \leqslant k$ such that $d_i > d_{i-1}+\cdots+d_1+d_0+1$. Prove that there are infinitely many positive integers $n{}$ such that $n,n+1,\ldots,n+2019$ are all discontinuous.

2021 Thailand TST, 2

Let $\mathcal{A}$ be the set of all $n\in\mathbb{N}$ for which there exist $k\in\mathbb{N}$ and $a_0,a_1,\dots,a_{k-1}\in \{1,2,\dots,9\}$ such that $a_0 \geq a_1 \geq \cdots \geq a_{k-1}$ and $n = a_0 +a_1 \cdot 10^1 +\cdots +a_{k-1}\cdot 10^{k-1}$. Let $\mathcal{B}$ be the set of all $m \in\mathbb{N}$ for which there exist $l \in\mathbb{N}$ and $b_0,b_1,\dots,b_{l-1} \in \{1,2,\dots,9\}$ such that $b_0 \leq b_1 \leq \cdots\leq b_{l-1}$ and $m = b_0 + b_1 \cdot 10^1 + \cdots+ b_{l-1}\cdot 10^{l-1}$. [list=a] [*] Are there infinitely many $n\in \mathcal{A}$ such that $n^2-3\in\mathcal{A} \ ?$ [*] Are there infinitely many $m\in \mathcal{B}$ such that $m^2-3\in\mathcal{B} \ ?$ [/list] [i]Proposed by Pakawut Jiradilok and Wijit Yangjit[/i]