Found problems: 15460
2010 Contests, 1
For a positive integer $n$, $S(n)$ denotes the sum of its digits and $U(n)$ its unit digit. Determine all positive integers $n$ with the property that
\[n = S(n) + U(n)^2.\]
2008 Czech-Polish-Slovak Match, 3
Find all primes $p$ such that the expression
\[\binom{p}1^2+\binom{p}2^2+\cdots+\binom{p}{p-1}^2\]
is divisible by $p^3$.
2015 Postal Coaching, Problem 4
For every positive integer$ n$, let $P(n)$ be the greatest prime divisor of $n^2+1$. Show that there are infinitely many quadruples $(a, b, c, d)$ of positive integers that satisfy $a < b < c < d$ and $P(a) = P(b) = P(c) = P(d)$.
1975 Spain Mathematical Olympiad, 6
Let $\{x_n\}$ and $\{y_n\}$ be two sequences of natural numbers defined as follow:
$x_1 = 1, \,\,\, x_2 = 1, \,\,\, x_{n+2} = x_{n+1} + 2x_n$ for $n = 1, 2, 3, ...$
$y_1 = 1, \,\,\, y_2 = 7, \,\,\, y_{n+2} = 2y_{n+1} + 3y_n$ for $n = 1, 2, 3, ...$
Prove that, except for the case $x_1 = y_1 = 1$, there is no natural value that occurs in the two sequences.
1982 Austrian-Polish Competition, 4
Let $P(x)$ denote the product of all (decimal) digits of a natural number $x$. For any positive integer $x_1$, define the sequence $(x_n)$ recursively by $x_{n+1} = x_n + P(x_n)$. Prove or disprove that the sequence $(x_n)$ is necessarily bounded.
2009 Belarus Team Selection Test, 2
Let $ a_1$, $ a_2$, $ \ldots$, $ a_n$ be distinct positive integers, $ n\ge 3$. Prove that there exist distinct indices $ i$ and $ j$ such that $ a_i \plus{} a_j$ does not divide any of the numbers $ 3a_1$, $ 3a_2$, $ \ldots$, $ 3a_n$.
[i]Proposed by Mohsen Jamaali, Iran[/i]
2019 Hong Kong TST, 1
Determine all pairs $(n, k)$ of distinct positive integers such that there exists a positive integer $s$ for which the number of divisors of $sn$ and of $sk$ are equal.
2023 CMI B.Sc. Entrance Exam, 6
Consider a positive integer $a > 1$. If $a$ is not a perfect square then at the next move we add $3$ to it and if it is a perfect square we take the square root of it. Define the trajectory of a number $a$ as the set obtained by performing this operation on $a$. For example the cardinality of $3$ is $\{3, 6, 9\}$.
Find all $n$ such that the cardinality of $n$ is finite.
The following part problems may attract partial credit.
$\textbf{(a)}$Show that the cardinality of the trajectory of a number cannot be $1$ or $2$.
$\textbf{(b)}$Show that $\{3, 6, 9\}$ is the only trajectory with cardinality $3$.
$\textbf{(c)}$ Show that there for all $k \geq 3$, there exists a number such that the cardinality
of its trajectory is $k$.
$\textbf{(d)}$ Give an example of a number with cardinality of trajectory as infinity.
2000 Brazil Team Selection Test, Problem 4
[b]Problem:[/b]For a positive integer $ n$,let $ V(n; b)$ be the number of decompositions of $ n$ into a
product of one or more positive integers greater than $ b$. For example,$ 36 \equal{} 6.6 \equal{}4.9 \equal{} 3.12 \equal{} 3 .3. 4$, so that $ V(36; 2) \equal{} 5$.Prove that for all positive integers $ n$; b it holds that $ V(n;b)<\frac{n}{b}$. :)
2024 Belarusian National Olympiad, 11.1
Let $m$ and $n$ be two integers bigger than one $1$. $m+n$ positive integers not exceeding $mn-1$ are chosen. Prove that among them one can find $x \neq y$, that satisfy
$\lfloor \frac{x}{n} \rfloor = \lfloor \frac{y}{n} \rfloor$ and $\lfloor \frac{x}{m} \rfloor = \lfloor \frac{y}{m} \rfloor$
[i]A. Voidelevich[/i]
2018 LMT Fall, Team Round
[b]p1.[/b] Evaluate $1+3+5+··· +2019$.
[b]p2.[/b] Evaluate $1^2 -2^2 +3^2 -4^2 +...· +99^2 -100^2$.
[b]p3. [/b]Find the sum of all solutions to $|2018+|x -2018|| = 2018$.
[b]p4.[/b] The angles in a triangle form a geometric series with common ratio $\frac12$ . Find the smallest angle in the triangle.
[b]p5.[/b] Compute the number of ordered pairs $(a,b,c,d)$ of positive integers $1 \le a,b,c,d \le 6$ such that $ab +cd$ is a multiple of seven.
[b]p6.[/b] How many ways are there to arrange three birch trees, four maple, and five oak trees in a row if trees of the same species are considered indistinguishable.
[b]p7.[/b] How many ways are there for Mr. Paul to climb a flight of 9 stairs, taking steps of either two or three at a time?
[b]p8.[/b] Find the largest natural number $x$ for which $x^x$ divides $17!$
[b]p9.[/b] How many positive integers less than or equal to $2018$ have an odd number of factors?
[b]p10.[/b] Square $MAIL$ and equilateral triangle $LIT$ share side $IL$ and point $T$ is on the interior of the square. What is the measure of angle $LMT$?
[b]p11.[/b] The product of all divisors of $2018^3$ can be written in the form $2^a \cdot 2018^b$ for positive integers $a$ and $b$. Find $a +b$.
[b]p12.[/b] Find the sum all four digit palindromes. (A number is said to be palindromic if its digits read the same forwards and backwards.
[b]p13.[/b] How ways are there for an ant to travel from point $(0,0)$ to $(5,5)$ in the coordinate plane if it may only move one unit in the positive x or y directions each step, and may not pass through the point $(1, 1)$ or $(4, 4)$?
[b]p14.[/b] A certain square has area $6$. A triangle is constructed such that each vertex is a point on the perimeter of the square. What is the maximum possible area of the triangle?
[b]p15.[/b] Find the value of ab if positive integers $a,b$ satisfy $9a^2 -12ab +2b^2 +36b = 162$.
[b]p16.[/b] $\vartriangle ABC$ is an equilateral triangle with side length $3$. Point $D$ lies on the segment $BC$ such that $BD = 1$ and $E$ lies on $AC$ such that $AE = AD$. Compute the area of $\vartriangle ADE$.
[b]p17[/b]. Let $A_1, A_2,..., A_{10}$ be $10$ points evenly spaced out on a line, in that order. Points $B_1$ and $B_2$ lie on opposite sides of the perpendicular bisector of $A_1A_{10}$ and are equidistant to $l$. Lines $B_1A_1,...,B_1A_{10}$ and $B_2A_1,...· ,B_2A_{10}$ are drawn. How many triangles of any size are present?
[b]p18.[/b] Let $T_n = 1+2+3··· +n$ be the $n$th triangular number. Determine the value of the infinite sum $\sum_{k\ge 1} \frac{T_k}{2^k}$.
[b]p19.[/b] An infinitely large bag of coins is such that for every $0.5 < p \le 1$, there is exactly one coin in the bag with probability $p$ of landing on heads and probability $1- p$ of landing on tails. There are no other coins besides these in the bag. A coin is pulled out of the bag at random and when flipped lands on heads. Find the probability that the coin lands on heads when flipped again.
[b]p20.[/b] The sequence $\{x_n\}_{n\ge 1}$ satisfies $x1 = 1$ and $(4+ x_1 + x_2 +··· + x_n)(x_1 + x_2 +··· + x_{n+1}) = 1$ for all $n \ge 1$. Compute $\left \lfloor \frac{x_{2018}}{x_{2019}} \right \rfloor$.
PS. You had better use hide for answers.
2022 All-Russian Olympiad, 8
For a natural number $N$, consider all distinct perfect squares that can be obtained from $N$ by deleting one digit from its decimal representation. Prove that the number of such squares is bounded by some value that doesn't depend on $N$.
2021 Israel TST, 4
Let $r$ be a positive integer and let $a_r$ be the number of solutions to the equation $3^x-2^y=r$ ,such that $0\leq x,y\leq 5781$ are integers. What is the maximal value of $a_r$?
2020 Polish Junior MO Second Round, 5.
Let $a$, $b$ be such integers that $gcd(a + n,b + n) > 1$ for every integer $n \geq 1$. Prove that $a = b$.
2024 Thailand TST, 3
Let $a,b,c,d$ be positive integers satisfying \[\frac{ab}{a+b}+\frac{cd}{c+d}=\frac{(a+b)(c+d)}{a+b+c+d}.\] Determine all possible values of $a+b+c+d$.
Kettering MO, 2020
[b]p1.[/b] Darth Vader urgently needed a new Death Star battle station. He sent requests to four planets asking how much time they would need to build it. The Mandalorians answered that they can build it in one year, the Sorganians in one and a half year, the Nevarroins in two years, and the Klatoonians in three years. To expedite the work Darth Vader decided to hire all of them to work together. The Rebels need to know when the Death Star is operational. Can you help the Rebels and find the number of days needed if all four planets work together? We assume that one year $= 365$ days.
[b]p2.[/b] Solve the inequality: $\left( \sin \frac{\pi}{12} \right)^{\sqrt{1-x}} > \left( \sin \frac{\pi}{12} \right)^x$
[b]p3.[/b] Solve the equation: $\sqrt{x^2 + 4x + 4} = x^2 + 3x - 6$
[b]p4.[/b] Solve the system of inequalities on $[0, 2\pi]$:
$$\sin (2x) \ge \sin (x)$$
$$\cos (2x) \le \cos (x)$$
[b]p5.[/b] The planet Naboo is under attack by the imperial forces. Three rebellian camps are located at the vertices of a triangle. The roads connecting the camps are along the sides of the triangle. The length of the first road is less than or equal to $20$ miles, the length of the second road is less than or equal to $30$ miles, and the length of the third road is less than or equal to $45$ miles. The Rebels have to cover the area of this triangle by a defensive field. What is the maximal area that they may need to cover?
[b]p6.[/b] The Lake Country on the planet Naboo has the shape of a square. There are nine roads in the country. Each of the roads is a straight line that divides the country into two trapezoidal parts such that the ratio of the areas of these parts is $2:5$. Prove that at least three of these roads intersect at one point.
PS. You should use hide for answers.
2011 China Team Selection Test, 2
Let $n$ be a positive integer and let $\alpha_n $ be the number of $1$'s within binary representation of $n$.
Show that for all positive integers $r$,
\[2^{2n-\alpha_n}\phantom{-1} \bigg|^{\phantom{0}}_{\phantom{-1}} \sum_{k=-n}^{n} \binom{2n}{n+k} k^{2r}.\]
2009 USAMTS Problems, 4
The Rational Unit Jumping Frog starts at $(0, 0)$ on the Cartesian plane, and each minute jumps a distance of exactly $1$ unit to a point with rational coordinates.
(a) Show that it is possible for the frog to reach the point $\left(\frac15,\frac{1}{17}\right)$ in a finite amount of time.
(b) Show that the frog can never reach the point $\left(0,\frac14\right)$.
1987 Romania Team Selection Test, 10
Let $a,b,c$ be integer numbers such that $(a+b+c) \mid (a^{2}+b^{2}+c^{2})$. Show that there exist infinitely many positive integers $n$ such that $(a+b+c) \mid (a^{n}+b^{n}+c^{n})$.
[i]Laurentiu Panaitopol[/i]
2023 CUBRMC, 1
Ben starts with an integer greater than $9$ and subtracts the sum of its digits from it to get a new integer. He repeats this process with each new integer he gets until he gets a positive $1$-digit integer. Find all possible $1$-digit integers Ben can end with from this process.
2008 Hong Kong TST, 3
Prove that there are infinitely many primes $ p$ such that the total number of solutions mod $ p$ to the equation $ 3x^{3}\plus{}4y^{4}\plus{}5z^{3}\minus{}y^{4}z \equiv 0$ is $ p^2$
2000 IMO Shortlist, 6
A nonempty set $ A$ of real numbers is called a $ B_3$-set if the conditions $ a_1, a_2, a_3, a_4, a_5, a_6 \in A$ and $ a_1 \plus{} a_2 \plus{} a_3 \equal{} a_4 \plus{} a_5 \plus{} a_6$ imply that the sequences $ (a_1, a_2, a_3)$ and $ (a_4, a_5, a_6)$ are identical up to a permutation. Let $A = \{a_0 = 0 < a_1 < a_2 < \cdots \}$, $B = \{b_0 = 0 < b_1 < b_2 < \cdots \}$ be infinite sequences of real numbers with $ D(A) \equal{} D(B),$ where, for a set $ X$ of real numbers, $ D(X)$ denotes the difference set $ \{|x\minus{}y|\mid x, y \in X \}.$ Prove that if $ A$ is a $ B_3$-set, then $ A \equal{} B.$
2019 Israel National Olympiad, 4
In the beginning, the number 1 is written on the board 9999 times. We are allowed to perform the following actions:
[list]
[*] Erase four numbers of the form $x,x,y,y$, and instead write the two numbers $x+y,x-y$. (The order or location of the erased numbers does not matter)
[*] Erase the number 0 from the board, if it's there.
[/list]
Is it possible to reach a state where:
[list=a]
[*] Only one number remains on the board?
[*] At most three numbers remain on the board?
[/list]
2025 Turkey Team Selection Test, 2
For all positive integers $n$, the function $\gamma: \mathbb{Z}^+ \to \mathbb{Z}_{\geq 0}$ is defined as, $\gamma(1) = 0$ and for all $n > 1$, if the prime factorization of $n$ is $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k},$ then $\gamma(n) = \alpha_1 + \alpha_2 + \dots + \alpha_k$. We have an arithmetic sequence $X = \{x_i\}_{i=1}^{\infty}$. If for a positive integer $a > 1$, the sequence $\{ \gamma(a^{x_i} -1) \}$ is also an arithmetic sequence, show that the sequence $X$ has to be constant.
2014 CHMMC (Fall), Mixer
[u]Fermi Questions[/u]
[b]p1.[/b] What is $\sin (1000)$? (note: that's $1000$ radians, not degrees)
[b]p2.[/b] In liters, what is the volume of $10$ million US dollars' worth of gold?
[b]p3.[/b] How many trees are there on Earth?
[b]p4.[/b] How many prime numbers are there between $10^8$ and $10^9$?
[b]p5.[/b] What is the total amount of time spent by humans in spaceflight?
[b]p6.[/b] What is the global domestic product (total monetary value of all goods and services produced in a country's borders in a year) of Bangladesh in US dollars?
[b]p7.[/b] How much time does the average American spend eating during their lifetime, in hours?
[b]p8.[/b] How many CHMMC-related emails did the directors receive or send in the last month?
[u]Suspiciously Familiar. . .[/u]
[b]p9.[/b] Suppose a farmer learns that he will die at the end of the year (day $365$, where today is day $0$) and that he has $100$ sheep. He decides to sell all his sheep on one day, and that his utility is given by $ab$ where $a$ is the money he makes by selling the sheep (which always have a fixed price) and $b$ is the number of days he has left to enjoy the profit; i.e., $365 - k$ where $k$ is the day number. If every day his sheep breed and multiply their numbers by $(421 + b)/421$ (yes, there are small, fractional sheep), on which day should he sell out?
[b]p10.[/b] Suppose in your sock drawer of $14$ socks there are $5$ different colors and $3$ different lengths present. One day, you decide you want to wear two socks that have either different colors or different lengths but not both. Given only this information, what is the maximum number of choices you might have?
[u]I'm So Meta Even This Acronym[/u]
[b]p11.[/b] Let $\frac{s}{t}$ be the answer of problem $13$, written in lowest terms. Let $\frac{p}{q}$ be the answer of problem $12$, written in lowest terms.
If player $1$ wins in problem $11$, let $n = q$. Otherwise, let $n = p$.
Two players play a game on a connected graph with $n$ vertices and $t$ edges. On each player's turn, they remove one edge of the graph, and lose if this causes the graph to become disconnected. Which player (first or second) wins?
[b]p12.[/b] Let $\frac{s}{t}$ be the answer of problem $13$, written in lowest terms.
If player $1$ wins in problem $11$, let $n = t$. Otherwise, let $n = s$.
Find the maximum value of
$$\frac{x^n}{1 + \frac12 x + \frac14 x^2 + ...+ \frac{1}{2^{2n}} x^{2n}}$$ for $x > 0$.
[b]p13.[/b] Let $\frac{p}{q}$ be the answer of problem $12$, written in lowest terms.
Let $y$ be the largest integer such that $2^y$ divides $p$.
If player $1$ wins in problem $11$, let $z = q$. Otherwise, let $z = p$.
Suppose that $a_1 = 1$ and $$a_{n+1} = a_n -\frac{z}{n + 2}+\frac{2z}{n + 1}-\frac{z}{n}$$
What is $a_y$?
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].