This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2007 India National Olympiad, 2

Let $ n$ be a natural number such that $ n \equal{} a^2 \plus{} b^2 \plus{}c^2$ for some natural numbers $ a,b,c$. Prove that \[ 9n \equal{} (p_1a\plus{}q_1b\plus{}r_1c)^2 \plus{} (p_2a\plus{}q_2b\plus{}r_2c)^2 \plus{} (p_3a\plus{}q_3b\plus{}r_3c)^2\] where $ p_j$'s , $ q_j$'s , $ r_j$'s are all [b]nonzero[/b] integers. Further, if $ 3$ does [b]not[/b] divide at least one of $ a,b,c,$ prove that $ 9n$ can be expressed in the form $ x^2\plus{}y^2\plus{}z^2$, where $ x,y,z$ are natural numbers [b]none[/b] of which is divisible by $ 3$.

2023 Nordic, P3

Find all functions $f:\mathbb{N}_0 \to \mathbb{Z}$ such that $$f(k)-f(l) \mid k^2-l^2$$ for all integers $k, l \geq 0$.

2022 Princeton University Math Competition, A1

Let $f : Z_{>0} \to Z_{>0}$ be a function which satisfies $k|f^k(x)-x$ for all $k, x \in Z_{>0}$ and $f(x)-x \le 2023$. If $f(1) = 2000$, what can $f$ be? [i]Remark[/i]: Here, $f^k (x)$ denotes the $k$-fold application of $f$ to $x$.

2023 Kazakhstan National Olympiad, 5

Given are positive integers $a, b, m, k$ with $k \geq 2$. Prove that there exist infinitely many $n$, such that $\gcd (\varphi_m(n), \lfloor \sqrt[k] {an+b} \rfloor)=1$, where $\varphi_m(n)$ is the $m$-th iteration of $\varphi(n)$.

1999 Brazil Team Selection Test, Problem 5

(a) If $m, n$ are positive integers such that $2^n-1$ divides $m^2 + 9$, prove that $n$ is a power of $2$; (b) If $n$ is a power of $2$, prove that there exists a positive integer $m$ such that $2^n-1$ divides $m^2 + 9$.

1988 Bundeswettbewerb Mathematik, 1

For the natural numbers $x$ and $y$, $2x^2 + x = 3y^2 + y$ . Prove that then $x-y$, $2x + 2y + 1$ and $3x + 3y + 1$ are perfect squares.

1989 Federal Competition For Advanced Students, 1

Natural numbers $ a \le b \le c \le d$ satisfy $ a\plus{}b\plus{}c\plus{}d\equal{}30$. Find the maximum value of the product $ P\equal{}abcd.$

2002 Estonia National Olympiad, 2

Does there exist an integer containing only digits $2$ and $0$ which is a $k$-th power of a positive integer ($k \ge2$)?

2021 Princeton University Math Competition, A3 / B5

Compute the number of ordered pairs of non-negative integers $(x, y)$ which satisfy $x^2 + y^2 = 32045.$

2005 Finnish National High School Mathematics Competition, 4

The numbers $1, 3, 7$ and $9$ occur in the decimal representation of an integer. Show that permuting the order of digits one can obtain an integer divisible by $7.$

2023 ABMC, 2023 Oct

[b]p1.[/b] What is $2 \cdot 24 + 20 \cdot 24 + 202 \cdot 4 + 2024$? [b]p2.[/b] Jerry has $300$ legos. Tie can either make cars, which require $17$ legos, or bikes, which require $13$ legos. Assuming he uses all of his legos, how many ordered pairs $(a, b)$ are there such that he makes $a$ cars and $b$ bikes? [b]p3.[/b] Patrick has $7$ unique textbooks: $2$ Geometry books, $3$ Precalculus books and $2$ Algebra II books. How many ways can he arrange his books on a bookshelf such that all the books of the same subjects are adjacent to each other? [b]p4.[/b] After a hurricane, a $32$ meter tall flagpole at the Act on-Boxborough Regional High School snapped and fell over. Given that the snapped part remains in contact with the original pole, and the top of the polo falls $24$ meters away from the bottom of the pole, at which height did the polo snap? (Assume the flagpole is perpendicular to the ground.) [b]p5.[/b] Jimmy is selling lemonade. Iio has $200$ cups of lemonade, and he will sell them all by the end of the day. Being the ethically dubious individual he is, Jimmy intends to dilute a few of the cups of lemonade with water to conserve resources. Jimmy sells each cup for $\$4$. It costs him $\$ 1$ to make a diluted cup of lemonade, and it costs him $\$2.75$ to make a cup of normal lemonade. What is the minimum number of diluted cups Jimmy must sell to make a profit of over $\$400$? [b]p6.[/b] Jeffrey has a bag filled with five fair dice: one with $4$ sides, one with $6$ sides, one with $8$ sides, one with $12$ sides, and one with $20$ sides. The dice are numbered from $1$ to the number of sides on the die. Now, Marco will randomly pick a die from .Jeffrey's bag and roll it. The probability that Marco rolls a $7$ can be expressed as $\frac{a}{b}$ where $a$ and $b$ are relatively prime positive integers. Find $a+b$. [b]p7.[/b] What is the remainder when the sum of the first $2024$ odd numbers is divided by $6072$? [b]p8.[/b] A rhombus $ABCD$ with $\angle A = 60^o$ and $AB = 600$ cm is drawn on a piece of paper. Three ants start moving from point $A$ to the three other points on the rhombus. One ant walks from $A$ to $B$ at a leisurely speed of $10$ cm/s. The second ant runs from $A$ to $C$ at a slightly quicker pace of $6\sqrt3$ cm/s, arriving to $C$ $x$ seconds after the first ant. The third ant travels from $A$ to $B$ to $D$ at a constant speed, arriving at $D$ $x$ seconds after the second ant. The speed of the last ant can be written as $\frac{m}{n}$ cm/s, where $m$ and $n$ are relatively prime positive integers. Find $mn$. [b]p9.[/b] This year, the Apple family has harvested so many apples that they cannot sell them all! Applejack decides to make $40$ glasses of apple cider to give to her friends. If Twilight and Fluttershy each want $1$ or $2$ glasses; Pinkie Pic wants cither $2$, $14$, or $15$ glasses; Rarity wants an amount of glasses that is a power of three; and Rainbow Dash wants any odd number of glasses, then how many ways can Applejack give her apple cider to her friends? Note: $1$ is considered to be a power of $3$. [b]p10.[/b] Let $g_x$ be a geometric sequence with first term $27$ and successive ratio $2n$ (so $g_{x+1}/g_x = 2n$). Then, define a function $f$ as $f(x) = \log_n(g_x)$, where $n$ is the base of the logarithm. It is known that the sum of the first seven terms of $f(x)$ is $42$. Find $g_2$, the second term of the geometric sequence. Note: The logarithm base $b$ of $x$, denoted $\log_b(x)$ is equal to the value $y$ such that $b^y = x$. In other words, if $\log_b(x) = y$, then $b^y = x$. [b]p11.[/b] Let $\varepsilon$ be an ellipse centered around the origin, such that its minor axis is perpendicular to the $x$-axis. The length of the ellipse's major and minor axes is $8$ and $6$, respectively. Then, let $ABCD$ be a rectangle centered around the origin, such that $AB$ is parallel to the $x$-axis. The lengths of $AB$ and $BC$ are $8$ and $3\sqrt2$, respectively. The area outside the ellipse but inside the rectangle can be expressed as $a\sqrt{b}-c-d\pi$, for positive integers $a$, $b$, $c$, $d$ where $b$ is not divisible by a perfect square of any prime. Find $a + b + c + d$. [img]https://cdn.artofproblemsolving.com/attachments/e/c/9d943966763ee7830d037ef98c21139cf6f529.png[/img] [b]p12.[/b] Let $N = 2^7 \cdot 3^7 \cdot 5^5$. Find the number of ways to express $N$ as the product of squares and cubes, all of which are integers greater than $1$. [b]p13.[/b] Jerry and Eric are playing a $10$-card game where Jerry is deemed the ’’landlord" and Eric is deemed the ' peasant'’. To deal the cards, the landlord keeps one card to himself. Then, the rest of the $9$ cards are dealt out, such that each card has a $1/2$ chance to go to each player. Once all $10$ cards are dealt out, the landlord compares the number of cards he owns with his peasant. The probability that the landlord wins is the fraction of cards he has. (For example, if Jerry has $5$ cards and Eric has $2$ cards, Jerry has a$ 5/7$ ths chance of winning.) The probability that Jerry wins the game can be written as $\frac{p}{q}$ where $p$ and $q$ are relatively prime. Find $p + q$. [b]p14.[/b] Define $P(x) = 20x^4 + 24x^3 + 10x^2 + 21x+ 7$ to have roots $a$, $b$, $c$, and $d$. If $Q(x)$ has roots $\frac{1}{a-2}$,$\frac{1}{b-2}$,$ \frac{1}{c-2}$, $\frac{1}{d-2}$ and integer coefficients with a greatest common divisor of $1$, then find $Q(2)$. [b]p15.[/b] Let $\vartriangle ABC$ be a triangle with side lengths $AB = 14$, $BC = 13$, and $AC = 15$. The incircle of $\vartriangle ABC$ is drawn with center $I$, tangent to $\overline{AB}$ at $X$. The line $\overleftrightarrow{IX}$ intersects the incircle again at $Y$ and intersects $\overline{AC}$ at $Z$. The area of $\vartriangle AYZ$ can be expressed as $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2019-IMOC, N1

Find all pairs of positive integers $(x, y)$ so that $$(xy - 6)^2 | x^2 + y^2$$

MMPC Part II 1958 - 95, 1964

[b]p1.[/b] The edges of a tetrahedron are all tangent to a sphere. Prove that the sum of the lengths of any pair of opposite edges equals the sum of the lengths of any other pair of opposite edges. (Two edges of a tetrahedron are said to be opposite if they do not have a vertex in common.) [b]p2.[/b] Find the simplest formula possible for the product of the following $2n - 2$ factors: $$\left(1+\frac12 \right),\left(1-\frac12 \right), \left(1+\frac13 \right) , \left(1-\frac13 \right),...,\left(1+\frac{1}{n} \right), \left(1-\frac{1}{n} \right)$$. Prove that your formula is correct. [b]p3.[/b] Solve $$\frac{(x + 1)^2+1}{x + 1} + \frac{(x + 4)^2+4}{x + 4}=\frac{(x + 2)^2+2}{x + 2}+\frac{(x + 3)^2+3}{x + 3}$$ [b]p4.[/b] Triangle $ABC$ is inscribed in a circle, $BD$ is tangent to this circle and $CD$ is perpendicular to $BD$. $BH$ is the altitude from $B$ to $AC$. Prove that the line $DH$ is parallel to $AB$. [img]https://cdn.artofproblemsolving.com/attachments/e/9/4d0b136dca4a9b68104f00300951837adef84c.png[/img] [b]p5.[/b] Consider the picture below as a section of a city street map. There are several paths from $A$ to $B$, and if one always walks along the street, the shortest paths are $15$ blocks in length. Find the number of paths of this length between $A$ and $B$. [img]https://cdn.artofproblemsolving.com/attachments/8/d/60c426ea71db98775399cfa5ea80e94d2ea9d2.png[/img] [b]p6.[/b] A [u]finite [/u] [u]graph [/u] is a set of points, called [u]vertices[/u], together with a set of arcs, called [u]edges[/u]. Each edge connects two of the vertices (it is not necessary that every pair of vertices be connected by an edge). The [u]order [/u] of a vertex in a finite graph is the number of edges attached to that vertex. [u]Example[/u] The figure at the right is a finite graph with $4$ vertices and $7$ edges. [img]https://cdn.artofproblemsolving.com/attachments/5/9/84d479c5dbd0a6f61a66970e46ab15830d8fba.png[/img] One vertex has order $5$ and the other vertices order $3$. Define a finite graph to be [u]heterogeneous [/u] if no two vertices have the same order. Prove that no graph with two or more vertices is heterogeneous. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2010 Dutch BxMO TST, 3

Let $N$ be the number of ordered 5-tuples $(a_{1}, a_{2}, a_{3}, a_{4}, a_{5})$ of positive integers satisfying $\frac{1}{a_{1}}+\frac{1}{a_{2}}+\frac{1}{a_{3}}+\frac{1}{a_{4}}+\frac{1}{a_{5}}=1$ Is $N$ even or odd? Oh and [b]HINTS ONLY[/b], please do not give full solutions. Thanks.

2005 Romania Team Selection Test, 2

Let $n\geq 1$ be an integer and let $X$ be a set of $n^2+1$ positive integers such that in any subset of $X$ with $n+1$ elements there exist two elements $x\neq y$ such that $x\mid y$. Prove that there exists a subset $\{x_1,x_2,\ldots, x_{n+1} \} \in X$ such that $x_i \mid x_{i+1}$ for all $i=1,2,\ldots, n$.

2025 Kyiv City MO Round 1, Problem 5

Some positive integer has an even number of divisors. Anya wants to split these divisors into pairs so that the products of the numbers in each pair have the same number of divisors. Prove that she can do this in exactly one way. [i]Proposed by Oleksii Masalitin[/i]

2007 Gheorghe Vranceanu, 3

Prove that there are two natural numbers $ p,q, $ satisfying $$ p<q<n\bigg|p+(p+1)+\cdots +(q-1) +q, $$ if and only if $ n $ is not a power of $ 2. $

2003 Costa Rica - Final Round, 6

Say a number is [i]tico[/i] if the sum of it's digits is a multiple of $2003$. $\text{(i)}$ Show that there exists a positive integer $N$ such that the first $2003$ multiples, $N,2N,3N,\ldots 2003N$ are all tico. $\text{(ii)}$ Does there exist a positive integer $N$ such that all it's multiples are tico?

2012 Dutch Mathematical Olympiad, 1

Let $a, b, c$, and $d$ be four distinct integers. Prove that $(a-b)(a-c)(a-d)(b-c)(b-d)(c-d)$ is divisible by $12$.

2008 Postal Coaching, 1

Prove that for any $n \ge 1$, $LCM _{0\le k\le n} \big \{$ $n \choose k$ $\big\} = \frac{1}{n + 1} LCM \{1, 2,3,...,n + 1\}$

2016 CHMMC (Fall), 1

Let $a_n$ be the $n$th positive integer such that when $n$ is written in base $3$, the sum of the digits of $n$ is divisible by $3$. For example, $a_1 = 5$ because $5 = 12_3$. Compute $a_{2016}$.

2002 Mongolian Mathematical Olympiad, Problem 4

Let there be $131$ given distinct natural numbers, each having prime divisors not exceeding $42$. Prove that one can choose four of them whose product is a perfect square.

DMM Team Rounds, 2006

[b]p1.[/b] What is the smallest positive integer $x$ such that $\frac{1}{x} <\sqrt{12011} - \sqrt{12006}$? [b]p2. [/b] Two soccer players run a drill on a $100$ foot by $300$ foot rectangular soccer eld. The two players start on two different corners of the rectangle separated by $100$ feet, then run parallel along the long edges of the eld, passing a soccer ball back and forth between them. Assume that the ball travels at a constant speed of $50$ feet per second, both players run at a constant speed of $30$ feet per second, and the players lead each other perfectly and pass the ball as soon as they receive it, how far has the ball travelled by the time it reaches the other end of the eld? [b]p3.[/b] A trapezoid $ABCD$ has $AB$ and $CD$ both perpendicular to $AD$ and $BC =AB + AD$. If $AB = 26$, what is $\frac{CD^2}{AD+CD}$ ? [b]p4.[/b] A hydrophobic, hungry, and lazy mouse is at $(0, 0)$, a piece of cheese at $(26, 26)$, and a circular lake of radius $5\sqrt2$ is centered at $(13, 13)$. What is the length of the shortest path that the mouse can take to reach the cheese that also does not also pass through the lake? [b]p5.[/b] Let $a, b$, and $c$ be real numbers such that $a + b + c = 0$ and $a^2 + b^2 + c^2 = 3$. If $a^5 + b^5 + c^5\ne 0$, compute $\frac{(a^3+b^3+c^3)(a^4+b^4+c^4)}{a^5+b^5+c^5}$. [b]p6. [/b] Let $S$ be the number of points with integer coordinates that lie on the line segment with endpoints $\left( 2^{2^2}, 4^{4^4}\right)$ and $\left(4^{4^4}, 0\right)$. Compute $\log_2 (S - 1)$. [b]p7.[/b] For a positive integer $n$ let $f(n)$ be the sum of the digits of $n$. Calculate $$f(f(f(2^{2006})))$$ [b]p8.[/b] If $a_1, a_2, a_3, a_4$ are roots of $x^4 - 2006x^3 + 11x + 11 = 0$, find $|a^3_1 + a^3_2 + a^3_3 + a^3_4|$. [b]p9.[/b] A triangle $ABC$ has $M$ and $N$ on sides $BC$ and $AC$, respectively, such that $AM$ and $BN$ intersect at $P$ and the areas of triangles $ANP$, $APB$, and $PMB$ are $5$, $10$, and $8$ respectively. If $R$ and $S$ are the midpoints of $MC$ and $NC$, respectively, compute the area of triangle $CRS$. [b]p10.[/b] Jack's calculator has a strange button labelled ''PS.'' If Jack's calculator is displaying the positive integer $n$, pressing PS will cause the calculator to divide $n$ by the largest power of $2$ that evenly divides $n$, and then adding 1 to the result and displaying that number. If Jack randomly chooses an integer $k$ between $ 1$ and $1023$, inclusive, and enters it on his calculator, then presses the PS button twice, what is the probability that the number that is displayed is a power of $2$? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2016 India PRMO, 13

Find the total number of times the digit ‘$2$’ appears in the set of integers $\{1,2,..,1000\}$. For example, the digit ’$2$’ appears twice in the integer $229$.

2018 Regional Olympiad of Mexico Center Zone, 5

Find all solutions of the equation $$p ^ 2 + q ^ 2 + 49r ^ 2 = 9k ^ 2-101$$ with $ p$, $q$ and $r$ positive prime numbers and $k$ a positive integer.