Found problems: 15460
2013 Saudi Arabia Pre-TST, 1.2
Let $x, y$ be two non-negative integers. Prove that $47$ divides $3^x - 2^y$ if and only if $23$ divides $4x + y$.
2004 Germany Team Selection Test, 1
Consider the real number axis (i. e. the $x$-axis of a Cartesian coordinate system). We mark the points $1$, $2$, ..., $2n$ on this axis. A flea starts at the point $1$. Now it jumps along the real number axis; it can jump only from a marked point to another marked point, and it doesn't visit any point twice. After the ($2n-1$)-th jump, it arrives at a point from where it cannot jump any more after this rule, since all other points are already visited. Hence, with its $2n$-th jump, the flea breaks this rule and gets back to the point $1$. Assume that the sum of the (non-directed) lengths of the first $2n-1$ jumps of the flea was $n\left(2n-1\right)$. Show that the length of the last ($2n$-th) jump is $n$.
2002 Argentina National Olympiad, 2
Determine the smallest positive integer $k$ so that the equation $$2002x+273y=200201+k$$ has integer solutions, and for that value of $k$, find the number of solutions $\left (x,y\right )$ with $x$, $y$ positive integers that have the equation.
2014 Swedish Mathematical Competition, 6
Determine all odd primes $p$ and $q$ such that the equation $x^p + y^q = pq$ at least one solution $(x, y)$ where $x$ and $y$ are positive integers.
2024 Indonesia TST, N
Find all functions $f:\mathbb{N} \rightarrow \mathbb{N}$ such that for every prime number $p$ and natural number $x$,
$$\{ x,f(x),\cdots f^{p-1}(x) \} $$
is a complete residue system modulo $p$. With $f^{k+1}(x)=f(f^k(x))$ for every natural number $k$ and $f^1(x)=f(x)$.
[i]Proposed by IndoMathXdZ[/i]
2016 Turkmenistan Regional Math Olympiad, Problem 3
Find all distinct prime numbers $p,q,r,s$ such that $1-\frac{1}{p} - \frac{1}{q} -\frac{1}{r} - \frac{1}{s} =\frac{1}{pqrs}$
2017 Costa Rica - Final Round, 2
Determine the greatest common divisor of the numbers:
$$5^5-5, 7^7-7, 9^9-9 ,..., 2017^{2017}-2017,$$
1970 Poland - Second Round, 3
Prove the theorem:
There is no natural number $ n > 1 $ such that the number $ 2^n - 1 $ is divisible by $ n $.
2022 Iran Team Selection Test, 2
For a positive integer $n$, let $\tau(n)$ and $\sigma(n)$ be the number of positive divisors of $n$ and the sum of positive divisors of $n$, respectively. let $a$ and $b$ be positive integers such that $\sigma(a^n)$ divides $\sigma(b^n)$ for all $n\in \mathbb{N}$. Prove that each prime factor of $\tau(a)$ divides $\tau(b)$.
Proposed by MohammadAmin Sharifi
2012 India National Olympiad, 2
Let $p_1<p_2<p_3<p_4$ and $q_1<q_2<q_3<q_4$ be two sets of prime numbers, such that $p_4 - p_1 = 8$ and $q_4 - q_1= 8$. Suppose $p_1 > 5$ and $q_1>5$. Prove that $30$ divides $p_1 - q_1$.
2017 Polish Junior Math Olympiad First Round, 5.
Let $a$ and $b$ be the positive integers. Show that at least one of the numbers $a$, $b$, $a+b$ can be expressed as the difference of the squares of two integers.
2022/2023 Tournament of Towns, P6
Peter added a positive integer $M{}$ to a positive integer $N{}$ and noticed that the sum of the digits of the resulting integer is the same as the sum of the digits of $N{}$. Then he added $M{}$ to the result again, and so on. Will Peter eventually get a number with the same digit sum as the number $N{}$ again?
2019 Centers of Excellency of Suceava, 2
Let $ \left( s_n \right)_{n\ge 1 } $ be a sequence with $ s_1 $ and defined recursively as $ s_{n+1}=s_n^2-s_n+1. $
Prove that any two terms of this sequence are coprime.
[i]Dan Nedeianu[/i]
2015 District Olympiad, 4
[b]a)[/b] Show that the three last digits of $ 1038^2 $ are equal with $ 4. $
[b]b)[/b] Show that there are infinitely many perfect squares whose last three digits are equal with $ 4. $
[b]c)[/b] Prove that there is no perfect square whose last four digits are equal to $ 4. $
2013 China Team Selection Test, 2
Prove that: there exists a positive constant $K$, and an integer series $\{a_n\}$, satisfying:
$(1)$ $0<a_1<a_2<\cdots <a_n<\cdots $;
$(2)$ For any positive integer $n$, $a_n<1.01^n K$;
$(3)$ For any finite number of distinct terms in $\{a_n\}$, their sum is not a perfect square.
2022 Princeton University Math Competition, B1
Suppose that the greatest common divisor of $n$ and $5040$ is equal to $120.$ Determine the sum of the four smallest possible positive integers $n.$
2012 Danube Mathematical Competition, 2
Consider the natural number prime $p, p> 5$. From the decimal number $\frac1p$, randomly remove $2012$ numbers, after the comma. Show that the remaining number can be represented as $\frac{a}{b}$ , where $a$ and $b$ are coprime numbers , and $b$ is multiple of $p$.
2020 Romanian Master of Mathematics Shortlist, N2
For a positive integer $n$, let $\varphi(n)$ and $d(n)$ denote the value of the Euler phi function at $n$ and the number of positive divisors of $n$, respectively. Prove that there are infinitely many positive integers $n$ such that $\varphi(n)$ and $d(n)$ are both perfect squares.
[i]Finland, Olli Järviniemi[/i]
LMT Guts Rounds, 2021 S
[u]Round 5[/u]
[b]p13.[/b] Pieck the Frog hops on Pascal’s Triangle, where she starts at the number $1$ at the top. In a hop, Pieck can hop to one of the two numbers directly below the number she is currently on with equal probability. Given that the expected value of the number she is on after $7$ hops is $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers, find $m+n$.
[b]p14.[/b] Maisy chooses a random set $(x, y)$ that satisfies $$x^2 + y^2 -26x -10y \le 482.$$ The probability that $y>0$ can be expressed as $\frac{A\pi -B\sqrt{C}}{D \pi}$. Find $A+B +C +D$.
[color=#f00]Due to the problem having a typo, all teams who inputted answers received points[/color]
[b]p15.[/b] $6$ points are located on a circle. How many ways are there to draw any number of line segments between the points such that none of the line segments overlap and none of the points are on more than one line segment? (It is possible to draw no line segments).
[u]Round 6[/u]
[b]p16.[/b] Find the number of $3$ by $3$ grids such that each square in the grid is colored white or black and no two black squares share an edge.
[b]p17.[/b] Let $ABC$ be a triangle with side lengths $AB = 20$, $BC = 25$, and $AC = 15$. Let $D$ be the point on BC such that $CD = 4$. Let $E$ be the foot of the altitude from $A$ to $BC$. Let $F$ be the intersection of $AE$ with the circle of radius $7$ centered at $A$ such that $F$ is outside of triangle $ABC$. $DF$ can be expressed as $\sqrt{m}$, where $m$ is a positive integer. Find $m$.
[b]p18.[/b] Bill and Frank were arrested under suspicion for committing a crime and face the classic Prisoner’s Dilemma. They are both given the choice whether to rat out the other and walk away, leaving their partner to face a $9$ year prison sentence. Given that neither of them talk, they both face a $3$ year sentence. If both of them talk, they both will serve a $6$ year sentence. Both Bill and Frank talk or do not talk with the same probabilities. Given the probability that at least one of them talks is $\frac{11}{36}$ , find the expected duration of Bill’s sentence in months.
[u]Round 7[/u]
[b]p19.[/b] Rectangle $ABCD$ has point $E$ on side $\overline{CD}$. Point $F$ is the intersection of $\overline{AC}$ and $\overline{BE}$. Given that the area of $\vartriangle AFB$ is $175$ and the area of $\vartriangle CFE$ is $28$, find the area of $ADEF$.
[b]p20.[/b] Real numbers $x, y$, and $z$ satisfy the system of equations
$$5x+ 13y -z = 100,$$
$$25x^2 +169y^2 -z2 +130x y= 16000,$$
$$80x +208y-2z = 2020.$$
Find the value of $x yz$.
[color=#f00]Due to the problem having infinitely many solutions, all teams who inputted answers received points.
[/color]
[b]p21.[/b] Bob is standing at the number $1$ on the number line. If Bob is standing at the number $n$, he can move to $n +1$, $n +2$, or $n +4$. In howmany different ways can he move to the number $10$?
[u]Round 8[/u]
[b]p22.[/b] A sequence $a_1,a_2,a_3, ...$ of positive integers is defined such that $a_1 = 4$, and for each integer $k \ge 2$, $$2(a_{k-1} +a_k +a_{k+1}) = a_ka_{k-1} +8.$$ Given that $a_6 = 488$, find $a_2 +a_3 +a_4 +a_5$.
[b]p23.[/b] $\overline{PQ}$ is a diameter of circle $\omega$ with radius $1$ and center $O$. Let $A$ be a point such that $AP$ is tangent to $\omega$. Let $\gamma$ be a circle with diameter $AP$. Let $A'$ be where $AQ$ hits the circle with diameter $AP$ and $A''$ be where $AO$ hits the circle with diameter $OP$. Let $A'A''$ hit $PQ$ at $R$. Given that the value of the length $RA'$ is is always less than $k$ and $k$ is minimized, find the greatest integer less than or equal to $1000k$.
[b]p24.[/b] You have cards numbered $1,2,3, ... ,100$ all in a line, in that order. You may swap any two adjacent cards at any time. Given that you make ${100 \choose 2}$ total swaps, where you swap each distinct pair of cards exactly once, and do not do any swaps simultaneously, find the total number of distinct possible final orderings of the cards.
PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h3166472p28814057]here [/url] and 9-12 [url=https://artofproblemsolving.com/community/c3h3166480p28814155]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1992 ITAMO, 6
Let $a$ and $b$ be integers. Prove that if $\sqrt[3]{a}+\sqrt[3]{b}$ is a rational number, then both $a$ and $b$ are perfect cubes.
2010 Singapore MO Open, 5
A prime number $p$ and integers $x, y, z$ with $0 < x < y < z < p$ are given. Show that if the numbers $x^3, y^3, z^3$ give the same remainder when divided by $p$, then $x^2 + y^2 + z^2$ is divisible by $x + y + z.$
1991 Vietnam National Olympiad, 2
Let $k>1$ be an odd integer. For every positive integer n, let $f(n)$ be the greatest positive integer for which $2^{f(n)}$ divides $k^n-1$. Find $f(n)$ in terms of $k$ and $n$.
2021 Israel National Olympiad, P2
Does there exist an infinite sequence of primes $p_1, p_2, p_3, \dots $ for which,
\[p_{n+1}=2p_n+1\]
for each $n$?
1983 Tournament Of Towns, (039) O1
Numbers from $1$ to $1000$ are arranged around a circle. Prove that it is possible to form $500$ non-intersecting line segments, each joining two such numbers, and so that in each case the difference between the numbers at each end (in absolute value) is not greater than $749$.
(AA Razborov, Moscow)
2002 Nordic, 4
Eva, Per and Anna play with their pocket calculators. They choose different integers and check, whether or not they are divisible by ${11}$. They only look at nine-digit numbers consisting of all the digits ${1, 2, . . . , 9}$. Anna claims that the probability of such a number to be a multiple of ${11}$ is exactly ${1/11}$. Eva has a different opinion: she thinks the probability is less than ${1/11}$. Per thinks the probability is more than ${1/11}$. Who is correct?