This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

1999 Swedish Mathematical Competition, 6

$S$ is any sequence of at least $3$ positive integers. A move is to take any $a, b$ in the sequence such that neither divides the other and replace them by gcd $(a,b)$ and lcm $(a,b)$. Show that only finitely many moves are possible and that the final result is independent of the moves made, except possibly for order.

2023 Brazil Team Selection Test, 5

For each $1\leq i\leq 9$ and $T\in\mathbb N$, define $d_i(T)$ to be the total number of times the digit $i$ appears when all the multiples of $1829$ between $1$ and $T$ inclusive are written out in base $10$. Show that there are infinitely many $T\in\mathbb N$ such that there are precisely two distinct values among $d_1(T)$, $d_2(T)$, $\dots$, $d_9(T)$.

2013 Tournament of Towns, 2

A math teacher chose $10$ consequtive numbers and submitted them to Pete and Basil. Each boy should split these numbers in pairs and calculate the sum of products of numbers in pairs. Prove that the boys can pair the numbers differently so that the resulting sums are equal.

2019 Thailand TST, 3

Let $n \ge 2018$ be an integer, and let $a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n$ be pairwise distinct positive integers not exceeding $5n$. Suppose that the sequence \[ \frac{a_1}{b_1}, \frac{a_2}{b_2}, \dots, \frac{a_n}{b_n} \] forms an arithmetic progression. Prove that the terms of the sequence are equal.

2016 Dutch IMO TST, 3

Find all positive integers $k$ for which the equation: $$ \text{lcm}(m,n)-\text{gcd}(m,n)=k(m-n)$$ has no solution in integers positive $(m,n)$ with $m\neq n$.

2017 Hanoi Open Mathematics Competitions, 6

Find all pairs of integers $a, b$ such that the following system of equations has a unique integral solution $(x , y , z )$ : $\begin{cases}x + y = a - 1 \\ x(y + 1) - z^2 = b \end{cases}$

2007 Bosnia Herzegovina Team Selection Test, 2

Find all pairs of integers $(x,y)$ such that $x(x+2)=y^2(y^2+1)$

2009 Postal Coaching, 4

A four - digit natural number which is divisible by $7$ is given. The number obtained by writing the digits in reverse order is also divisible by $7$. Furthermore, both the numbers leave the same remainder when divided by $37$. Find the 4-digit number.

2018 Polish MO Finals, 2

A subset $S$ of size $n$ of a plane consisting of points with both coordinates integer is given, where $n$ is an odd number. The injective function $f\colon S\rightarrow S$ satisfies the following: for each pair of points $A, B\in S$, the distance between points $f(A)$ and $f(B)$ is not smaller than the distance between points $A$ and $B$. Prove there exists a point $X$ such that $f(X)=X$.

2017 India PRMO, 28

Let $p,q$ be prime numbers such that $n^{3pq}-n$ is a multiple of $3pq$ for [b]all[/b] positive integers $n$. Find the least possible value of $p+q$.

1936 Moscow Mathematical Olympiad, 030

How many ways are there to represent $10^6$ as the product of three factors? Factorizations which only differ in the order of the factors are considered to be distinct.

LMT Guts Rounds, 2011

[u]Round 9[/u] [b]p25.[/b] Let $S$ be the region bounded by the lines $y = x/2$, $y = -x/2$, and $x = 6$. Pick a random point $P = (x, y)$ in $S$ and translate it $3$ units right to $P' = (x + 3, y)$. What is the probability that $P'$ is in $S$? [b]p26.[/b] A triangle with side lengths $17$, $25$, and $28$ has a circle centered at each of its three vertices such that the three circles are mutually externally tangent to each other. What is the combined area of the circles? [b]p27.[/b] Find all ordered pairs $(x, y)$ of integers such that $x^2 - 2x + y^2 - 6y = -9$. [u]Round 10[/u] [b]p28.[/b] In how many ways can the letters in the word $SCHAFKOPF$ be arranged if the two $F$’s cannot be next to each other and the $A$ and the $O$ must be next to each other? [b]p29.[/b] Let a sequence $a_0, a_1, a_2, ...$ be defined by $a_0 = 20$, $a_1 = 11$, $a_2 = 0$, and for all integers $n \ge 3$, $$a_n + a_{n-1 }= a_{n-2} + a_{n-3}.$$ Find the sum $a_0 + a_1 + a_2 + · · · + a_{2010} + a_{2011}$. [b]p30.[/b] Find the sum of all positive integers b such that the base $b$ number $190_b$ is a perfect square. [u]Round 11[/u] [b]p31.[/b] Find all real values of x such that $\sqrt[3]{4x -1} + \sqrt[3]{4x + 1 }= \sqrt[3]{8x}$. [b]p32.[/b] Right triangle $ABC$ has a right angle at B. The angle bisector of $\angle ABC$ is drawn and extended to a point E such that $\angle ECA = \angle ACB$. Let $F$ be the foot of the perpendicular from $E$ to ray $\overrightarrow{BC}$. Given that $AB = 4$, $BC = 2$, and $EF = 8$, find the area of triangle $ACE$. [b]p33.[/b] You are the soul in the southwest corner of a four by four grid of distinct souls in the Fields of Asphodel. You move one square east and at the same time all the other souls move one square north, south, east, or west so that each square is now reoccupied and no two souls switched places directly. How many end results are possible from this move? [u]Round 12[/u] [b]p34.[/b] A [i]Pythagorean [/i] triple is an ordered triple of positive integers $(a, b, c)$ with $a < b < c $and $a^2 + b^2 = c^2$ . A [i]primitive [/i] Pythagorean triple is a Pythagorean triple where all three numbers are relatively prime to each other. Find the number of primitive Pythagorean triples in which all three members are less than $100,000$. If $P$ is the true answer and $A$ is your team’s answer to this problem, your score will be $max \left\{15 -\frac{|A -P|}{500} , 0 \right\}$ , rounded to the nearest integer. [b]p35.[/b] According to the Enable2k North American word list, how many words in the English language contain the letters $L, M, T$ in order but not necessarily together? If $A$ is your team’s answer to this problem and $W$ is the true answer, the score you will receive is $max \left\{15 -100\left| \frac{A}{W}-1\right| , 0 \right\}$, rounded to the nearest integer. [b]p36.[/b] Write down $5$ positive integers less than or equal to $42$. For each of the numbers written, if no other teams put down that number, your team gets $3$ points. Otherwise, you get $0$ points. Any number written that does not satisfy the given requirement automatically gets $0$ points. PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h2952214p26434209]here[/url] and 5-8 [url=https://artofproblemsolving.com/community/c3h3133709p28395558]here[/url]. Rest Rounds soon. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2015 SG Originals, N6

Let $\mathbb{Z}_{>0}$ denote the set of positive integers. Consider a function $f: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$. For any $m, n \in \mathbb{Z}_{>0}$ we write $f^n(m) = \underbrace{f(f(\ldots f}_{n}(m)\ldots))$. Suppose that $f$ has the following two properties: (i) if $m, n \in \mathbb{Z}_{>0}$, then $\frac{f^n(m) - m}{n} \in \mathbb{Z}_{>0}$; (ii) The set $\mathbb{Z}_{>0} \setminus \{f(n) \mid n\in \mathbb{Z}_{>0}\}$ is finite. Prove that the sequence $f(1) - 1, f(2) - 2, f(3) - 3, \ldots$ is periodic. [i]Proposed by Ang Jie Jun, Singapore[/i]

1990 IMO Longlists, 95

Let $ p(x)$ be a cubic polynomial with rational coefficients. $ q_1$, $ q_2$, $ q_3$, ... is a sequence of rationals such that $ q_n \equal{} p(q_{n \plus{} 1})$ for all positive $ n$. Show that for some $ k$, we have $ q_{n \plus{} k} \equal{} q_n$ for all positive $ n$.

2021 Korea Winter Program Practice Test, 1

Does there exist such infinite set of positive integers $S$ that satisfies the condition below? *for all $a,b$ in $S$, there exists an odd integer $k$ that $a$ divides $b^k+1$.

2017 Estonia Team Selection Test, 1

Do there exist two positive powers of $5$ such that the number obtained by writing one after the other is also a power of $5$?

2004 China Team Selection Test, 2

Let u be a fixed positive integer. Prove that the equation $n! = u^{\alpha} - u^{\beta}$ has a finite number of solutions $(n, \alpha, \beta).$

2020 Peru IMO TST, 6

Find all functions $f:\mathbb Z_{>0}\to \mathbb Z_{>0}$ such that $a+f(b)$ divides $a^2+bf(a)$ for all positive integers $a$ and $b$ with $a+b>2019$.

2004 India IMO Training Camp, 3

An integer $n$ is said to be [i]good[/i] if $|n|$ is not the square of an integer. Determine all integers $m$ with the following property: $m$ can be represented, in infinitely many ways, as a sum of three distinct good integers whose product is the square of an odd integer. [i]Proposed by Hojoo Lee, Korea[/i]

2023 Kyiv City MO Round 1, Problem 4

Let's call a pair of positive integers $\overline{a_1a_2\ldots a_k}$ and $\overline{b_1b_2\ldots b_k}$ $k$-similar if all digits $a_1, a_2, \ldots, a_k , b_1 , b_2, \ldots, b_k$ are distinct, and there exist distinct positive integers $m, n$, for which the following equality holds: $$a_1^m + a_2^m + \ldots + a_k^m = b_1^n + b_2^n + \ldots + b_k^n$$ For which largest $k$ do there exist $k$-similar numbers? [i]Proposed by Oleksiy Masalitin[/i]

2018 Iran MO (1st Round), 6

Let $n$ be the smallest positive integer such that the remainder of $3n+45$, when divided by $1060$, is $16$. Find the remainder of $18n+17$ upon division by $1920$.

2010 Junior Balkan Team Selection Tests - Romania, 1

Determine the prime numbers $p, q, r$ with the property $\frac {1} {p} + \frac {1} {q} + \frac {1} {r} \ge 1$

2007 Pre-Preparation Course Examination, 7

Let $p$ be a prime such that $p \equiv 3 \pmod 4$. Prove that we can't partition the numbers $a,a+1,a+2,\cdots,a+p-2$,($a \in \mathbb Z$) in two sets such that product of members of the sets be equal.

LMT Speed Rounds, 2015

[b]p1.[/b] What is $\sqrt[2015]{2^01^5}$? [b]p2.[/b] What is the ratio of the area of square $ABCD$ to the area of square $ACEF$? [b]p3.[/b] $2015$ in binary is $11111011111$, which is a palindrome. What is the last year which also had this property? [b]p4.[/b] What is the next number in the following geometric series: $1020100$, $10303010$, $104060401$? [b]p5.[/b] A circle has radius $A$ and area $r$. If $A = r^2\pi$, then what is the diameter, $C$, of the circle? [b]p6.[/b] If $$O + N + E = 1$$ $$T + H + R + E + E = 3$$ $$N + I + N + E = 9$$ $$T + E + N = 10$$ $$T + H + I + R + T + E + E + N = 13$$ Then what is the value of $O$? [b]p7.[/b] By shifting the initial digit, which is $6$, of the positive integer $N$ to the end (for example, $65$ becomes $56$), we obtain a number equal to $\frac{N}{4}$ . What is the smallest such $N$? [b]p8.[/b] What is $\sqrt[3]{\frac{2015!(2013!)+2014!(2012!)}{2013!(2012!)}}$ ? [b]p9.[/b] How many permutations of the digits of $1234$ are divisible by $11$? [b]p10.[/b] If you choose $4$ cards from a normal $52$ card deck (with replacement), what is the probability that you will get exactly one of each suit (there are $4$ suits)? [b]p11.[/b] If $LMT$ is an equilateral triangle, and $MATH$ is a square, such that point $A$ is in the triangle, then what is $HL/AL$? [b]p12.[/b] If $$\begin{tabular}{cccccccc} & & & & & L & H & S\\ + & & & & H & I & G & H \\ + & & S & C & H & O & O & L \\ \hline = & & S & O & C & O & O & L \\ \end{tabular}$$ and $\{M, A, T,H, S, L,O, G, I,C\} = \{0, 1, 2, 3,4, 5, 6, 7, 8, 9\} $, then what is the ordered pair $(M + A +T + H, [T + e + A +M])$ where $e$ is $2.718...$and $[n]$ is the greatest integer less than or equal to $n$ ? [b]p13.[/b] There are $5$ marbles in a bag. One is red, one is blue, one is green, one is yellow, and the last is white. There are $4$ people who take turns reaching into the bag and drawing out a marble without replacement. If the marble they draw out is green, they get to draw another marble out of the bag. What is the probability that the $3$rd person to draw a marble gets the white marble? [b]p14.[/b] Let a "palindromic product" be a product of numbers which is written the same when written back to front, including the multiplication signs. For example, $234 * 545 * 432$, $2 * 2 *2 *2$, and $14 * 41$ are palindromic products whereas $2 *14 * 4 * 12$, $567 * 567$, and $2* 2 * 3* 3 *2$ are not. 2015 can be written as a "palindromic product" in two ways, namely $13 * 5 * 31$ and $31 * 5 * 13$. How many ways can you write $2016$ as a palindromic product without using 1 as a factor? [b]p15.[/b] Let a sequence be defined as $S_n = S_{n-1} + 2S_{n-2}$, and $S_1 = 3$ and $S_2 = 4$. What is $\sum_{n=1}^{\infty}\frac{S_n}{3^n}$ ? [b]p16.[/b] Put the numbers $0-9$ in some order so that every $2$-digit substring creates a number which is either a multiple of $7$, or a power of $2$. [b]p17.[/b] Evaluate $\dfrac{8+ \dfrac{8+ \dfrac{8+...}{3+...}}{3+ \dfrac{8+...}{3+...}}}{3+\dfrac{8+ \dfrac{8+...}{3+...}}{ 3+ \dfrac{8+...}{3+...}}}$, assuming that it is a positive real number. [b]p18.[/b] $4$ non-overlapping triangles, each of area $A$, are placed in a unit circle. What is the maximum value of $A$? [b]p19.[/b] What is the sum of the reciprocals of all the (positive integer) factors of $120$ (including $1$ and $120$ itself). [b]p20.[/b] How many ways can you choose $3$ distinct elements of $\{1, 2, 3,...,4000\}$ to make an increasing arithmetic series? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1996 Estonia National Olympiad, 2

Does there exist a positive integer such that its last digit is nonzero and that it becomes exactly two times bigger when the order of its digits is reversed?