This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2009 China Girls Math Olympiad, 8

For a positive integer $ n,$ $ a_{n}\equal{}n\sqrt{5}\minus{} \lfloor n\sqrt{5}\rfloor$. Compute the maximum value and the minimum value of $ a_{1},a_{2},\ldots ,a_{2009}.$

2022 IMO Shortlist, N6

Let $Q$ be a set of prime numbers, not necessarily finite. For a positive integer $n$ consider its prime factorization: define $p(n)$ to be the sum of all the exponents and $q(n)$ to be the sum of the exponents corresponding only to primes in $Q$. A positive integer $n$ is called [i]special[/i] if $p(n)+p(n+1)$ and $q(n)+q(n+1)$ are both even integers. Prove that there is a constant $c>0$ independent of the set $Q$ such that for any positive integer $N>100$, the number of special integers in $[1,N]$ is at least $cN$. (For example, if $Q=\{3,7\}$, then $p(42)=3$, $q(42)=2$, $p(63)=3$, $q(63)=3$, $p(2022)=3$, $q(2022)=1$.)

2011 India National Olympiad, 2

Call a natural number $n$ faithful if there exist natural numbers $a<b<c$ such that $a|b,$ and $b|c$ and $n=a+b+c.$ $(i)$ Show that all but a finite number of natural numbers are faithful. $(ii)$ Find the sum of all natural numbers which are not faithful.

2016 Macedonia National Olympiad, Problem 1

Solve the equation in the set of natural numbers $1+x^z + y^z = LCM(x^z,y^z)$

2018 India IMO Training Camp, 3

Determine all integers $ n\geq 2$ having the following property: for any integers $a_1,a_2,\ldots, a_n$ whose sum is not divisible by $n$, there exists an index $1 \leq i \leq n$ such that none of the numbers $$a_i,a_i+a_{i+1},\ldots,a_i+a_{i+1}+\ldots+a_{i+n-1}$$ is divisible by $n$. Here, we let $a_i=a_{i-n}$ when $i >n$. [i]Proposed by Warut Suksompong, Thailand[/i]

1988 India National Olympiad, 5

Show that there do not exist any distinct natural numbers $ a$, $ b$, $ c$, $ d$ such that $ a^3\plus{}b^3\equal{}c^3\plus{}d^3$ and $ a\plus{}b\equal{}c\plus{}d$.

II Soros Olympiad 1995 - 96 (Russia), 11.9

Let us denote by $b(n)$ the number of ways to represent $n$ in the form $$n = a_0+a_1 \cdot 2 +a_2 \cdot 2^2+...+ a_k \cdot 2^k,$$ where the coefficients at, $r = 1$,$2$,$...$, $k$ can be equal to $0$, $1$ or $2$. Find $b(1996)$.

2020 Turkey Team Selection Test, 9

For $a,n$ positive integers we show number of different integer 10-tuples $ (x_1,x_2,...,x_{10})$ on $ (mod n)$ satistfying $x_1x_2...x_{10}=a (mod n)$ with $f(a,n)$. Let $a,b$ given positive integers , a) Prove that there exist a positive integer $c$ such that for all $n\in \mathbb{Z^+}$ $$\frac {f(a,cn)}{f(b,cn)}$$is constant b) Find all $(a,b)$ pairs such that minumum possible value of $c$ is 27 where $c$ satisfying condition in $(a)$

1995 Mexico National Olympiad, 4

Find $26$ elements of $\{1, 2, 3, ... , 40\}$ such that the product of two of them is never a square. Show that one cannot find $27$ such elements.

2015 SGMO, Q3

$a_n,b_n,c_n$ are three sequences of positive integers satisfying $$\prod_{d|n}a_d=2^n-1,\prod_{d|n}b_d=\frac{3^n-1}{2},\prod_{d|n}c_d=\gcd(2^n-1,\frac{3^n-1}{2})$$ for all $n\in \mathbb{N}$. Prove that $\gcd(a_n,b_n)|c_n$ for all $n\in \mathbb{N}$

1987 Czech and Slovak Olympiad III A, 2

Given a prime $p>3$ and an odd integer $n>0$, show that the equation $$xyz=p^n(x+y+z)$$ has at least $3(n+1)$ different solutions up to symmetry. (That is, if $(x',y',z')$ is a solution and $(x'',y'',z'')$ is a permutation of the previous, they are considered to be the same solution.)

2010 CHMMC Winter, 2

The largest prime factor of $199^4 + 4$ has four digits. Compute the second largest prime factor.

2017 Princeton University Math Competition, 1

Call an ordered triple $(a, b, c)$ of integers feral if $b -a, c - a$ and $c - b$ are all prime. Find the number of feral triples where $1 \le a < b < c \le 20$.

2021 Bangladeshi National Mathematical Olympiad, 7

For a positive integer $n$, let $s(n)$ and $c(n)$ be the number of divisors of $n$ that are perfect squares and perfect cubes respectively. A positive integer $n$ is called fair if $s(n)=c(n)>1$. Find the number of fair integers less than $100$.

2012 AMC 10, 20

Bernado and Silvia play the following game. An integer between 0 and 999, inclusive, is selected and given to Bernado. Whenever Bernado receives a number, he doubles it and passes the result to Silvia. Whenever Silvia receives a number, she adds 50 to it and passes the result to Bernado. The winner is the last person who produces a number less than 1000. Let $N$ be the smallest initial number that results in a win for Bernado. What is the sum of the digits of $N$? $\textbf{(A)}\ 7 \qquad\textbf{(B)}\ 8 \qquad\textbf{(C)}\ 9 \qquad\textbf{(D)}\ 10 \qquad\textbf{(E)}\ 11$

2008 Indonesia TST, 2

Find all positive integers $1 \le n \le 2008$ so that there exist a prime number $p \ge n$ such that $$\frac{2008^p + (n -1)!}{n}$$ is a positive integer.

2012 Dutch IMO TST, 3

Determine all positive integers that cannot be written as $\frac{a}{b} + \frac{a+1}{b+1}$ where $a$ and $b$ are positive integers.

2008 Romania National Olympiad, 2

A rectangle can be divided by parallel lines to its sides into 200 congruent squares, and also in 288 congruent squares. Prove that the rectangle can also be divided into 392 congruent squares.

2024 All-Russian Olympiad Regional Round, 10.7

Are there $10$ consecutive positive integers, such that if we consider the digits that appear in the decimal representations of those numbers as a multiset, every digit appears the same number of times in this multiset?

2009 Dutch IMO TST, 1

For a positive integer $n$ let $S(n)$ be the sum of digits in the decimal representation of $n$. Any positive integer obtained by removing several (at least one) digits from the right-hand end of the decimal representation of $n$ is called a [i]stump[/i] of $n$. Let $T(n)$ be the sum of all stumps of $n$. Prove that $n=S(n)+9T(n)$.

2006 Polish MO Finals, 2

Find all positive integers $k$ for which number $3^k+5^k$ is a power of some integer with exponent greater than $1$.

2020 HK IMO Preliminary Selection Contest, 8

Find the smallest positive multiple of $77$ whose last four digits (from left to right) are $2020$.

2000 Korea - Final Round, 1

Let $p$ be a prime such that $p \equiv 1 (\text {mod}4)$. Evaluate \[\sum_{k=1}^{p-1} \left( \left \lfloor \frac{2k^2}{p}\right \rfloor - 2 \left \lfloor {\frac{k^2}{p}}\right \rfloor \right)\]

MMPC Part II 1996 - 2019, 2009

[b]p1.[/b] Given a group of $n$ people. An $A$-list celebrity is one that is known by everybody else (that is, $n - 1$ of them) but does not know anybody. A $B$-list celebrity is one that is known by exactly $n - 2$ people but knows at most one person. (a) What is the maximum number of $A$-list celebrities? You must prove that this number is attainable. (b) What is the maximum number of $B$-list celebrities? You must prove that this number is attainable. [b]p2.[/b] A polynomial $p(x)$ has a remainder of $2$, $-13$ and $5$ respectively when divided by $x+1$, $x-4$ and $x-2$. What is the remainder when $p(x)$ is divided by $(x + 1)(x - 4)(x - 2)$? [b]p3.[/b] (a) Let $x$ and y be positive integers satisfying $x^2 + y = 4p$ and $y^2 + x = 2p$, where $p$ is an odd prime number. Prove: $x + y = p + 1$. (b) Find all values of $x, y$ and $p$ that satisfy the conditions of part (a). You will need to prove that you have found all such solutions. [b]p4.[/b] Let function $f(x, y, z)$ be defined as following: $$f(x, y, z) = \cos^2(x - y) + \cos^2(y - z) + \cos^2(z - x), x, y, z \in R.$$ Find the minimum value and prove the result. [b]p5.[/b] In the diagram below, $ABC$ is a triangle with side lengths $a = 5$, $b = 12$,$ c = 13$. Let $P$ and $Q$ be points on $AB$ and $AC$, respectively, chosen so that the segment $PQ$ bisects the area of $\vartriangle ABC$. Find the minimum possible value for the length $PQ$. [img]https://cdn.artofproblemsolving.com/attachments/b/2/91a09dd3d831b299b844b07cd695ddf51cb12b.png[/img] PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url]. Thanks to gauss202 for sending the problems.

2021 USEMO, 2

Find all integers $n\ge1$ such that $2^n-1$ has exactly $n$ positive integer divisors. [i]Proposed by Ankan Bhattacharya [/i]