Found problems: 15460
1989 IMO Longlists, 27
Let $ L$ denote the set of all lattice points of the plane (points with integral coordinates). Show that for any three points $ A,B,C$ of $ L$ there is a fourth point $ D,$ different from $ A,B,C,$ such that the interiors of the segments $ AD,BD,CD$ contain no points of $ L.$ Is the statement true if one considers four points of $ L$ instead of three?
2019 European Mathematical Cup, 4
Let $u$ be a positive rational number and $m$ be a positive integer. Define a sequence $q_1,q_2,q_3,\dotsc$ such that $q_1=u$ and for $n\geqslant 2$:
$$\text{if }q_{n-1}=\frac{a}{b}\text{ for some relatively prime positive integers }a\text{ and }b, \text{ then }q_n=\frac{a+mb}{b+1}.$$
Determine all positive integers $m$ such that the sequence $q_1,q_2,q_3,\dotsc$ is eventually periodic for any positive rational number $u$.
[i]Remark:[/i] A sequence $x_1,x_2,x_3,\dotsc $ is [i]eventually periodic[/i] if there are positive integers $c$ and $t$ such that $x_n=x_{n+t}$ for all $n\geqslant c$.
[i]Proposed by Petar Nizié-Nikolac[/i]
1979 Dutch Mathematical Olympiad, 3
Define $a_1 = 1979$ and $a_{n+1} = 9^{a_n}$ for $n = 1,2,3,...$. Determine the last two digits of $a_{1979}$.
2017 Princeton University Math Competition, 3
Let $f(x) = (x - 5)(x - 12)$ and $g(x) = (x - 6)(x - 10)$.
Find the sum of all integers $n$ such that $\frac{f(g(n))}{f(n)^2}$ is defined and an integer.
Mid-Michigan MO, Grades 7-9, 2009
[b]p1.[/b] Arrange the whole numbers $1$ through $15$ in a row so that the sum of any two adjacent numbers is a perfect square. In how many ways this can be done?
[b]p2.[/b] Prove that if $p$ and $q$ are prime numbers which are greater than $3$ then $p^2 - q^2$ is divisible by $24$.
[b]p3.[/b] If a polyleg has even number of legs he always tells truth. If he has an odd number of legs he always lies.
Once a green polyleg told a dark-blue polyleg ”- I have $8$ legs. And you have only $6$ legs!”
The offended dark-blue polyleg replied ”-It is me who has $8$ legs, and you have only $7$ legs!”
A violet polyleg added ”-The dark-blue polyleg indeed has $8$ legs. But I have $9$ legs!”
Then a stripped polyleg started ”None of you has $8$ legs. Only I have $8$ legs!”
Which polyleg has exactly $8$ legs?
[b][b]p4.[/b][/b] There is a small puncture (a point) in the wall (as shown in the figure below to the right). The housekeeper has a small flag of the following form (see the figure left). Show on the figure all the points of the wall where you can hammer in a nail such that if you hang the flag it will close up the puncture.
[img]https://cdn.artofproblemsolving.com/attachments/a/f/8bb55a3fdfb0aff8e62bc4cf20a2d3436f5d90.png[/img]
[b]p5.[/b] Assume $ a, b, c$ are odd integers. Show that the quadratic equation $ax^2 + bx + c = 0$ has no rational solutions.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2015 Brazil Team Selection Test, 2
Find all triples $(p, x, y)$ consisting of a prime number $p$ and two positive integers $x$ and $y$ such that $x^{p -1} + y$ and $x + y^ {p -1}$ are both powers of $p$.
[i]Proposed by Belgium[/i]
2000 Cono Sur Olympiad, 3
Is there a positive integer divisible by the product of its digits such that this product is greater than $10^{2000}$?
2002 Junior Balkan Team Selection Tests - Romania, 2
Let $k,n,p$ be positive integers such that $p$ is a prime number, $k < 1000$ and $\sqrt{k} = n\sqrt{p}$.
a) Prove that if the equation $\sqrt{k + 100x} = (n + x)\sqrt{p}$ has a non-zero integer solution, then $p$ is a divisor of $10$.
b) Find the number of all non-negative solutions of the above equation.
2017 Abels Math Contest (Norwegian MO) Final, 2
Let the sequence an be defined by $a_0 = 2, a_1 = 15$, and $a_{n+2 }= 15a_{n+1} + 16a_n$ for $n \ge 0$.
Show that there are infinitely many integers $k$ such that $269 | a_k$.
1999 Ukraine Team Selection Test, 8
Find all pairs $(x,n)$ of positive integers for which $x^n + 2^n + 1$ divides $x^{n+1} +2^{n+1} +1$.
2014 Switzerland - Final Round, 5
Let $a_1, a_2, ...$ a sequence of integers such that for every $n \in N$ we have:
$$\sum_{d | n} a_d = 2^n.$$
Show for every $n \in N$ that $n$ divides $a_n$.
Remark: For $n = 6$ the equation is $a_1 + a_2 + a_3 + a_6 = 2^6.$
2007 Iran Team Selection Test, 2
Find all monic polynomials $f(x)$ in $\mathbb Z[x]$ such that $f(\mathbb Z)$ is closed under multiplication.
[i]By Mohsen Jamali[/i]
2021/2022 Tournament of Towns, P1
Find the largest positive integer $n$ such that for each prime $p$ with $2<p<n$ the difference $n-p$ is also prime.
1967 IMO Shortlist, 2
Which fractions $ \dfrac{p}{q},$ where $p,q$ are positive integers $< 100$, is closest to $\sqrt{2} ?$ Find all digits after the point in decimal representation of that fraction which coincide with digits in decimal representation of $\sqrt{2}$ (without using any table).
2016 India Regional Mathematical Olympiad, 6
Let $(a_1,a_2,\dots)$ be a strictly increasing sequence of positive integers in arithmetic progression. Prove that there is an infinite sub-sequence of the given sequence whose terms are in a geometric progression.
1998 Bulgaria National Olympiad, 2
let m and n be natural numbers such that: $3m|(m+3)^n+1$
Prove that $\frac{(m+3)^n+1}{3m}$ is odd
2010 India IMO Training Camp, 8
Call a positive integer [b]good[/b] if either $N=1$ or $N$ can be written as product of [i]even[/i] number of prime numbers, not necessarily distinct.
Let $P(x)=(x-a)(x-b),$ where $a,b$ are positive integers.
(a) Show that there exist distinct positive integers $a,b$ such that $P(1),P(2),\cdots ,P(2010)$ are all good numbers.
(b) Suppose $a,b$ are such that $P(n)$ is a good number for all positive integers $n$. Prove that $a=b$.
2023 Durer Math Competition (First Round), 1
A group of students play the following game: they are counting one by one from $00$ to $99$ taking turns, but instead of every number they only say one of its digits. (The numbers in order are $00$, $01$, $02$, $...$., meaning that one-digit numbers are regarded as two-digit numbers with a first digit $0$.) One way of starting the counting could be for example $0$, $1$, $2$, $0$, $4$, $0$, $6$, $7$, $8$, $9,$ $1$, $1$, $2$, $1$, $1$, $5$, $6$, $1$, $8$, $1$, $0$, $2$ etc. When they reach $99$, the counting restarts from $00$. At some point Csongor enters the room and after listening to the counting for a while, he discovers that he is able to tell what number the counting is at. How many digits has Csongor heard at least?
2007 Pre-Preparation Course Examination, 3
Prove that for each $ a\in\mathbb N$, there are infinitely many natural $ n$, such that
\[ n\mid a^{n \minus{} a \plus{} 1} \minus{} 1.
\]
2024 Korea National Olympiad, 4
Find the smallest positive integer \( k \geq 2 \) for which there exists a polynomial \( f(x) \) of degree \( k \) with integer coefficients and a leading coefficient of \( 1 \) that satisfies the following condition:
(Condition) For any two integers \( m \) and \( n \), if \( f(m) - f(n) \) is a multiple of \( 31 \), then \( m - n \) is a multiple of \( 31 \).
2013 Saudi Arabia BMO TST, 3
Find all positive integers $x, y, z$ such that $2^x + 21^y = z^2$
2009 Singapore Team Selection Test, 1
Let $S=\{a+np : n=0,1,2,3,... \}$ where $a$ is a positive integer and $p$ is a prime. Suppose there exist positive integers $x$ and $y$ st $x^{41}$ and $y^{49}$ are in $S$. Determine if there exists a positive integer $z$ st $z^{2009}$ is in $S$.
2021 Lusophon Mathematical Olympiad, 6
A positive integer $n$ is called $omopeiro$ if there exists $n$ non-zero integers that are not necessarily distinct such that $2021$ is the sum of the squares of those $n$ integers. For example, the number $2$ is not an $omopeiro$, because $2021$ is not a sum of two non-zero squares, but $2021$ is an $omopeiro$, because $2021=1^2+1^2+ \dots +1^2$, which is a sum of $2021$ squares of the number $1$.
Prove that there exist more than 1500 $omopeiro$ numbers.
Note: proving that there exist at least 500 $omopeiro$ numbers is worth 2 points.
2019 LMT Fall, Team Round
[b]p1.[/b] What is the smallest possible value for the product of two real numbers that differ by ten?
[b]p2.[/b] Determine the number of positive integers $n$ with $1 \le n \le 400$ that satisfy the following:
$\bullet$ $n$ is a square number.
$\bullet$ $n$ is one more than a multiple of $5$.
$\bullet$ $n$ is even.
[b]p3.[/b] How many positive integers less than $2019$ are either a perfect cube or a perfect square but not both?
[b]p4.[/b] Felicia draws the heart-shaped figure $GOAT$ that is made of two semicircles of equal area and an equilateral triangle, as shown below. If $GO = 2$, what is the area of the figure?
[img]https://cdn.artofproblemsolving.com/attachments/3/c/388daa657351100f408ab3f1185f9ab32fcca5.png[/img]
[b]p5.[/b] For distinct digits $A, B$, and $ C$:
$$\begin{tabular}{cccc}
& A & A \\
& B & B \\
+ & C & C \\
\hline
A & B & C \\
\end{tabular}$$ Compute $A \cdot B \cdot C$.
[b]p6 [/b] What is the difference between the largest and smallest value for $lcm(a,b,c)$, where $a,b$, and $c$ are distinct positive integers between $1$ and $10$, inclusive?
[b]p7.[/b] Let $A$ and $B$ be points on the circumference of a circle with center $O$ such that $\angle AOB = 100^o$. If $X$ is the midpoint of minor arc $AB$ and $Y$ is on the circumference of the circle such that $XY\perp AO$, find the measure of $\angle OBY$ .
[b]p8. [/b]When Ben works at twice his normal rate and Sammy works at his normal rate, they can finish a project together in $6$ hours. When Ben works at his normal rate and Sammy works as three times his normal rate, they can finish the same project together in $4$ hours. How many hours does it take Ben and Sammy to finish that project if they each work together at their normal rates?
[b][b]p9.[/b][/b] How many positive integer divisors $n$ of $20000$ are there such that when $20000$ is divided by $n$, the quotient is divisible by a square number greater than $ 1$?
[b]p10.[/b] What’s the maximum number of Friday the $13$th’s that can occur in a year?
[b]p11.[/b] Let circle $\omega$ pass through points $B$ and $C$ of triangle $ABC$. Suppose $\omega$ intersects segment $AB$ at a point $D \ne B$ and intersects segment $AC$ at a point $E \ne C$. If $AD = DC = 12$, $DB = 3$, and $EC = 8$, determine the length of $EB$.
[b]p12.[/b] Let $a,b$ be integers that satisfy the equation $2a^2 - b^2 + ab = 18$. Find the ordered pair $(a,b)$.
[b]p13.[/b] Let $a,b,c$ be nonzero complex numbers such that $a -\frac{1}{b}= 8, b -\frac{1}{c}= 10, c -\frac{1}{a}= 12.$
Find $abc -\frac{1}{abc}$ .
[b]p14.[/b] Let $\vartriangle ABC$ be an equilateral triangle of side length $1$. Let $\omega_0$ be the incircle of $\vartriangle ABC$, and for $n > 0$, define the infinite progression of circles $\omega_n$ as follows:
$\bullet$ $\omega_n$ is tangent to $AB$ and $AC$ and externally tangent to $\omega_{n-1}$.
$\bullet$ The area of $\omega_n$ is strictly less than the area of $\omega_{n-1}$.
Determine the total area enclosed by all $\omega_i$ for $i \ge 0$.
[b]p15.[/b] Determine the remainder when $13^{2020} +11^{2020}$ is divided by $144$.
[b]p16.[/b] Let $x$ be a solution to $x +\frac{1}{x}= 1$. Compute $x^{2019} +\frac{1}{x^{2019}}$ .
[b]p17. [/b]The positive integers are colored black and white such that if $n$ is one color, then $2n$ is the other color. If all of the odd numbers are colored black, then how many numbers between $100$ and $200$ inclusive are colored white?
[b]p18.[/b] What is the expected number of rolls it will take to get all six values of a six-sided die face-up at least once?
[b]p19.[/b] Let $\vartriangle ABC$ have side lengths $AB = 19$, $BC = 2019$, and $AC = 2020$. Let $D,E$ be the feet of the angle bisectors drawn from $A$ and $B$, and let $X,Y$ to be the feet of the altitudes from $C$ to $AD$ and $C$ to $BE$, respectively. Determine the length of $XY$ .
[b]p20.[/b] Suppose I have $5$ unit cubes of cheese that I want to divide evenly amongst $3$ hungry mice. I can cut the cheese into smaller blocks, but cannot combine blocks into a bigger block. Over all possible choices of cuts in the cheese, what’s the largest possible volume of the smallest block of cheese?
PS. You had better use hide for answers.
2006 Germany Team Selection Test, 2
Find all positive integers $ n$ such that there exists a unique integer $ a$ such that $ 0\leq a < n!$ with the following property:
\[ n!\mid a^n \plus{} 1
\]
[i]Proposed by Carlos Caicedo, Colombia[/i]