Found problems: 15460
2007 Pre-Preparation Course Examination, 10
Let $a >1$ be a positive integer. Prove that the set $\{a^2+a-1,a^3+a-1,\cdots\}$ have a subset $S$ with infinite members and for any two members of $S$ like $x,y$ we have $\gcd(x,y)=1$. Then prove that the set of primes has infinite members.
2006 Tournament of Towns, 4
Every term of an infinite geometric progression is also a term of a given infinite arithmetic progression. Prove that the common ratio of the geometric progression is an integer. (4)
2025 USA IMO Team Selection Test, 6
Prove that there exists a real number $\varepsilon>0$ such that there are infinitely many sequences of integers $0<a_1<a_2<\hdots<a_{2025}$ satisfying
\[\gcd(a_1^2+1, a_2^2+1,\hdots, a_{2025}^2+1) > a_{2025}^{1+\varepsilon}.\]
[i]Pitchayut Saengrungkongka[/i]
2014 Baltic Way, 16
Determine whether $712! + 1$ is a prime number.
1996 All-Russian Olympiad Regional Round, 9.5
Find all natural numbers that have exactly six divisors whose sum is $3500$.
Mid-Michigan MO, Grades 5-6, 2009
[b]p1.[/b] Anne purchased yesterday at WalMart in Puerto Rico $6$ identical notebooks, $8$ identical pens and $7$ identical erasers. Anne remembers that each eraser costs $73$ cents. She did not buy anything else. Anne told her mother that she spent $12$ dollars and $76$ cents at Walmart. Can she be right? Note that in Puerto Rico there is no sales tax.
[b]p2.[/b] Two men ski one after the other first in a flat field and then uphill. In the field the men run with the same velocity $12$ kilometers/hour. Uphill their velocity drops to $8$ kilometers/hour. When both skiers enter the uphill trail segment the distance between them is $300$ meters less than the initial distance in the field. What was the initial distance between skiers? (There are $1000$ meters in 1 kilometer.)
[b]p3.[/b] In the equality $** + **** = ****$ all the digits are replaced by $*$. Restore the equality if it is known that any numbers in the equality does not change if we write all its digits in the opposite order.
[b]p4.[/b] If a polyleg has even number of legs he always tells truth. If he has an odd number of legs he always lies. Once a green polyleg told a dark-blue polyleg ”- I have $8$ legs. And you have only $6$ legs!” The offended dark-blue polyleg replied ”-It is me who has $8$ legs, and you have only $7$ legs!” A violet polyleg added ”-The dark-blue polyleg indeed has $8$ legs. But I have $9$ legs!” Then a stripped polyleg started: ”-None of you has $8$ legs. Only I have 8 legs!” Which polyleg has exactly $8$ legs?
[b]p5.[/b] Cut the figure shown below in two equal pieces. (Both the area and the form of the pieces must be the same.) [img]https://cdn.artofproblemsolving.com/attachments/e/4/778678c1e8748e213ffc94ba71b1f3cc26c028.png[/img]
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2013 Dutch BxMO/EGMO TST, 2
Consider a triple $(a, b, c)$ of pairwise distinct positive integers satisfying $a + b + c = 2013$. A step consists of replacing the triple $(x, y, z)$ by the triple $(y + z - x,z + x - y,x + y - z)$. Prove that, starting from the given triple $(a, b,c)$, after $10$ steps we obtain a triple containing at least one negative number.
1990 Greece National Olympiad, 3
For which $n$, $ n \in \mathbb{N}$ is the number $1^n+2^n+3^n$ divisible by $7$?
IV Soros Olympiad 1997 - 98 (Russia), grade7
[b]p1.[/b] In the correct identity $(x^2 - 1)(x + ...) = (x + 3)(x- 1)(x +...)$ two numbers were replaced with dots. What were these numbers?
[b]p2.[/b] A merchant is carrying money from point A to point B. There are robbers on the roads who rob travelers: on one road the robbers take $10\%$ of the amount currently available, on the other - $20\%$, etc. . How should the merchant travel to bring as much of the money as possible to B? What part of the original amount will he bring to B?
[img]https://cdn.artofproblemsolving.com/attachments/f/5/ab62ce8fce3d482bc52b89463c953f4271b45e.png[/img]
[b]p3.[/b] Find the angle between the hour and minute hands at $7$ hours $38$ minutes.
[b]p4.[/b] The lottery game is played as follows. A random number from $1$ to $1000$ is selected. If it is divisible by $2$, they pay a ruble, if it is divisible by $10$ - two rubles, by $12$ - four rubles, by $20$ - eight, if it is divisible by several of these numbers, then they pay the sum. How much can you win (at one time) in such a game? List all options.
[b]p5.[/b]The sum of the digits of a positive integer $x$ is equal to $n$. Prove that between $x$ and $10x$ you can find an integer whose sum of digits is $ n + 5$.
[b]p6.[/b] $9$ people took part in the campaign, which lasted $12$ days. There were $3$ people on duty every day. At the same time, the duty officers quarreled with each other and no two of them wanted to be on duty together ever again. Nevertheless, the participants of the campaign claim that for all $12$ days they were able to appoint three people on duty, taking into account this requirement. Could this be so?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c2416727_soros_olympiad_in_mathematics]here.[/url]
2018 Estonia Team Selection Test, 8
Find all integers $k \ge 5$ for which there is a positive integer $n$ with exactly $k$ positive divisors
$1 = d_1 <d_2 < ... <d_k = n$ and $d_2d_3 + d_3d_5 + d_5d_2 = n$.
2020 Durer Math Competition Finals, 5
On a piece of paper, we write down all positive integers $n$ such that all proper divisors of $n$ are less than $30$. We know that the sum of all numbers on the paper having exactly one proper divisor is $2397$. What is the sum of all numbers on the paper having exactly two proper divisors?
We say that $k$ is a proper divisor of the positive integer $n$ if $k | n$ and $1 < k < n$.
2013 Romanian Master of Mathematics, 1
For a positive integer $a$, define a sequence of integers $x_1,x_2,\ldots$ by letting $x_1=a$ and $x_{n+1}=2x_n+1$ for $n\geq 1$. Let $y_n=2^{x_n}-1$. Determine the largest possible $k$ such that, for some positive integer $a$, the numbers $y_1,\ldots,y_k$ are all prime.
2019 Middle European Mathematical Olympiad, 7
Let $a,b$ and $c$ be positive integers satisfying $a<b<c<a+b$. Prove that $c(a-1)+b$ does not divide $c(b-1)+a$.
[i]Proposed by Dominik Burek, Poland[/i]
2012 Czech And Slovak Olympiad IIIA, 1
Find all integers for which $n$ is $n^4 -3n^2 + 9$ prime
2008 Postal Coaching, 6
Consider the set $A = \{1, 2, 3, ..., 2008\}$. We say that a set is of [i]type[/i] $r, r \in \{0, 1, 2\}$, if that set is a nonempty subset of $A$ and the sum of its elements gives the remainder $r$ when divided by $3$. Denote by $X_r, r \in \{0, 1, 2\}$ the class of sets of type $r$. Determine which of the classes $X_r, r \in \{0, 1, 2\}$, is the largest.
2024 Ukraine National Mathematical Olympiad, Problem 1
Find all pairs $a, b$ of positive integers, for which
$$(a, b) + 3[a, b] = a^3 - b^3$$
Here $(a, b)$ denotes the greatest common divisor of $a, b$, and $[a, b]$ denotes the least common multiple of $a, b$.
[i]Proposed by Oleksiy Masalitin[/i]
2016 239 Open Mathematical Olympiad, 7
A set is called $six\ square$ if it has six pair-wise coprime numbers and for any partition of it into two set with three elements, the sum of the numbers in one of them is perfect square. Prove that there exist infinitely many $six\ square$.
2016 BMT Spring, 2
How many integers from $1$ to $2016$ are divisible by $3$ or $7$, but not $21$?
2007 Gheorghe Vranceanu, 1
Given an arbitrary natural number $ n, $ is there a multiple of $ n $ whose base $ 10 $ representation can be written only with the digits $ 0,2,7? $ Explain.
2019 Caucasus Mathematical Olympiad, 8
Determine if there exist positive integers $a_1,a_2,...,a_{10}$, $b_1,b_2,...,b_{10}$ satisfying the following property: for each non-empty subset $S$ of $\{1,2,\ldots,10\}$ the sum $\sum\limits_{i\in S}a_i$ divides $\left( 12+\sum\limits_{i\in S}b_i \right)$.
2014 Balkan MO Shortlist, N6
Let $ f: \mathbb{N} \rightarrow \mathbb{N} $ be a function from the positive integers to the positive integers for which $ f(1)=1,f(2n)=f(n) $ and $ f(2n+1)=f(n)+f(n+1) $ for all $ n\in \mathbb{N} $. Prove that for any natural number $ n $, the number of odd natural numbers $ m $ such that $ f(m)=n $ is equal to the number of positive integers not greater than $ n $ having no common prime factors with $ n $.
2023 CMIMC Algebra/NT, 5
Let $\mathcal{P}$ be a parabola that passes through the points $(0, 0)$ and $(12, 5)$. Suppose that the directrix of $\mathcal{P}$ takes the form $y = b$. (Recall that a parabola is the set of points equidistant from a point called the focus and line called the directrix) Find the minimum possible value of $|b|$.
[i]Proposed by Kevin You[/i]
2002 Iran MO (3rd Round), 14
A subset $S$ of $\mathbb N$ is [i]eventually linear[/i] iff there are $k,N\in\mathbb N$ that for $n>N,n\in S\Longleftrightarrow k|n$. Let $S$ be a subset of $\mathbb N$ that is closed under addition. Prove that $S$ is eventually linear.
2021 Princeton University Math Competition, 3
Let $f(N) = N \left( \frac{9}{10} \right)^N$ , and let $\frac{m}{n}$ denote the maximum value of $f(N)$, as $N$ ranges over the positive integers. If $m$ and $n$ are relatively prime positive integers, find the remainder when $m + n$ is divided by $1000$.
2007 Junior Balkan Team Selection Tests - Romania, 2
Solve in positive integers:
$(x^{2}+2)(y^{2}+3)(z^{2}+4)=60xyz$.