Found problems: 15460
1956 Moscow Mathematical Olympiad, 321
Find all two-digit numbers $x$ the sum of whose digits is the same as that of $2x$, $3x$, ... , $9x$.
JOM 2024, 5
Do there exist infinitely many triplets of positive integers $(a, b, c)$ such that
the following two conditions hold:
1. $\gcd(a, b, c) = 1$;
2. $a+b+c, a^2+b^2+c^2$ and $abc$ are all perfect squares?
[i](Proposed by Ivan Chan Guan Yu)[/i]
2002 Federal Math Competition of S&M, Problem 4
Is there a positive integer $ k$ such that none of the digits $ 3,4,5,6$ appear in the decimal representation of the number $ 2002!\cdot k$?
2011 Purple Comet Problems, 18
Let $a$ be a positive real number such that $\tfrac{a^2}{a^4-a^2+1}=\tfrac{4}{37}$. Then $\tfrac{a^3}{a^6-a^3+1}=\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
1966 All Russian Mathematical Olympiad, 074
Can both $(x^2+y)$ and $(y^2+x)$ be exact squares for natural $x$ and $y$?
1999 Brazil Team Selection Test, Problem 5
(a) If $m, n$ are positive integers such that $2^n-1$ divides $m^2 + 9$, prove
that $n$ is a power of $2$;
(b) If $n$ is a power of $2$, prove that there exists a positive integer $m$ such
that $2^n-1$ divides $m^2 + 9$.
1911 Eotvos Mathematical Competition, 3
Prove that $3^n + 1$ is not divisible by $2^n$ for any integer $n > 1$.
2019 Singapore MO Open, 4
Let $p \equiv 2 \pmod 3$ be a prime, $k$ a positive integer and $P(x) = 3x^{\frac{2p-1}{3}}+3x^{\frac{p+1}{3}}+x+1$. For any integer $n$, let $R(n)$ denote the remainder when $n$ is divided by $p$ and let $S = \{0,1,\cdots,p-1\}$. At each step, you can either (a) replaced every element $i$ of $S$ with $R(P(i))$ or (b) replaced every element $i$ of $S$ with $R(i^k)$. Determine all $k$ such that there exists a finite sequence of steps that reduces $S$ to $\{0\}$.
[i]Proposed by fattypiggy123[/i]
1997 Romania Team Selection Test, 4
Let $n\ge 2$ be an integer and let $P(X)=X^n+a_{n-1}X^{n-1}+\ldots +a_1X+1$ be a polynomial with positive integer coefficients. Suppose that $a_k=a_{n-k}$ for all $k\in 1,2,\ldots,n-1$. Prove that there exist infinitely many pairs of positive integers $x,y$ such that $x|P(y)$ and $y|P(x)$.
[i]Remus Nicoara[/i]
2014 France Team Selection Test, 4
Let $\mathbb{Z} _{>0}$ be the set of positive integers. Find all functions $f: \mathbb{Z} _{>0}\rightarrow \mathbb{Z} _{>0}$ such that
\[ m^2 + f(n) \mid mf(m) +n \]
for all positive integers $m$ and $n$.
2020 Malaysia IMONST 1, 17
Given a positive integer $n$. The number $2n$ has $28$ positive factors, while
the number $3n$ has $30$ positive factors.
Find the number of positive divisors of $6n$.
LMT Team Rounds 2010-20, 2018 Spring
[b]p1[/b]. Points $P_1,P_2,P_3,... ,P_n$ lie on a plane such that $P_aP_b = 1$,$P_cP_d = 2$, and $P_eP_f = 2018$ for not necessarily distinct indices $a,b,c,d,e, f \in \{1, 2,... ,n\}$. Find the minimum possible value of $n$.
[b]p2.[/b] Find the coefficient of the $x^2y^4$ term in the expansion of $(3x +2y)^6$.
[b]p3.[/b] Find the number of positive integers $n < 1000$ such that $n$ is a multiple of $27$ and the digit sum of $n$ is a multiple of $11$.
[b]p4.[/b] How many times do the minute hand and hour hand of a $ 12$-hour analog clock overlap in a $366$-day leap year?
[b]p5.[/b] Find the number of ordered triples of integers $(a,b,c)$ such that $(a +b)(b +c)(c + a) = 2018$.
[b]p6.[/b] Let $S$ denote the set of the first $2018$ positive integers. Call the score of a subset the sum of its maximal element and its minimal element. Find the sum of score $(x)$ over all subsets $s \in S$
[b]p7.[/b] How many ordered pairs of integers $(a,b)$ exist such that $1 \le a,b \le 20$ and $a^a$ divides $b^b$?
[b]p8.[/b] Let $f$ be a function such that for every non-negative integer $p$, $f (p)$ equals the number of ordered pairs of positive integers $(a,n)$ such that $a^n = a^p \cdot n$. Find $\sum^{2018}_{p=0}f (p)$.
[b]p9.[/b] A point $P$ is randomly chosen inside a regular octagon $A_1A_2A_3A_4A_5A_6A_7A_8$. What is the probability that the projections of $P$ onto the lines $\overleftrightarrow{A_i A_{i+1}}$ for $i = 1,2,... ,8$ lie on the segments $\overline{A_iA_{i+1}}$ for $i = 1,2,... ,8$ (where indices are taken $mod \,\, 8$)?
[b]p10. [/b]A person keeps flipping an unfair coin until it flips $3$ tails in a row. The probability of it landing on heads is $\frac23$ and the probability it lands on tails is $\frac13$ . What is the expected value of the number of the times the coin flips?
PS. You had better use hide for answers.
2016 CMIMC, 1
David, when submitting a problem for CMIMC, wrote his answer as $100\tfrac xy$, where $x$ and $y$ are two positive integers with $x<y$. Andrew interpreted the expression as a product of two rational numbers, while Patrick interpreted the answer as a mixed fraction. In this case, Patrick's number was exactly double Andrew's! What is the smallest possible value of $x+y$?
2007 Estonia Math Open Junior Contests, 8
Call a k-digit positive integer a [i]hyperprime[/i] if all its segments consisting of $ 1, 2, ..., k$ consecutive digits are prime. Find all hyperprimes.
2009 Jozsef Wildt International Math Competition, W. 27
Let $a$, $n$ be positive integers such that $a^n$ is a perfect number. Prove that $$a^{\frac{n}{\mu}}> \frac{\mu}{2}$$ where $\mu$ denotes the number of distinct prime divisors of $a^n$
2008 Turkey Team Selection Test, 4
The sequence $ (x_n)$ is defined as; $ x_1\equal{}a$, $ x_2\equal{}b$ and for all positive integer $ n$, $ x_{n\plus{}2}\equal{}2008x_{n\plus{}1}\minus{}x_n$. Prove that there are some positive integers $ a,b$ such that $ 1\plus{}2006x_{n\plus{}1}x_n$ is a perfect square for all positive integer $ n$.
2013 USAJMO, 1
Are there integers $a$ and $b$ such that $a^5b+3$ and $ab^5+3$ are both perfect cubes of integers?
2012 Dutch IMO TST, 3
Determine all pairs $(x, y)$ of positive integers satisfying
$x + y + 1 | 2xy$ and $ x + y - 1 | x^2 + y^2 - 1$.
2021 Macedonian Mathematical Olympiad, Problem 5
Let $(x_{n})_{n=1}^{+\infty}$ be a sequence defined recursively with $x_{n+1} = x_{n}(x_{n}-2)$ and $x_{1} = \frac{7}{2}$. Let $x_{2021} = \frac{a}{b}$, where $a,b \in \mathbb{N}$ are coprime. Show that if $p$ is a prime divisor of $a$, then either $3|p-1$ or $p=3$.
[i]Authored by Nikola Velov[/i]
2017 Estonia Team Selection Test, 11
For any positive integer $k$, denote the sum of digits of $k$ in its decimal representation by $S(k)$. Find all polynomials $P(x)$ with integer coefficients such that for any positive integer $n \geq 2016$, the integer $P(n)$ is positive and $$S(P(n)) = P(S(n)).$$
[i]Proposed by Warut Suksompong, Thailand[/i]
2015 Switzerland Team Selection Test, 4
Find all relatively prime integers $a,b$ such that $$a^2+a=b^3+b$$
2019 Kyiv Mathematical Festival, 5
Is it possible to fill the cells of a table of size $2019\times2019$ with pairwise distinct positive integers in such a way that in each rectangle of size $1\times2$ or $2\times1$ the larger number is divisible by the smaller one, and the ratio of the largest number in the table to the smallest one is at most $2019^4?$
2021 Saint Petersburg Mathematical Olympiad, 1
Let $p$ be a prime number. All natural numbers from $1$ to $p$ are written in a row in ascending order. Find all $p$ such that this sequence can be split into several blocks of consecutive numbers, such that every block has the same sum.
[i]A. Khrabov[/i]
2014 Peru MO (ONEM), 3
a) Let $a, b, c$ be positive integers such that $ab + b + 1$, $bc + c + 1$ and $ca + a + 1$ are divisors of the number $abc - 1$, prove that $a = b = c$.
b) Find all triples $(a, b, c)$ of positive integers such that the product $$(ab - b + 1)(bc - c + 1)(ca - a + 1)$$ is a divisor of the number $(abc + 1)^2$.
2018 Greece Team Selection Test, 4
Let $ p \geq 2$ be a prime number. Eduardo and Fernando play the following game making moves alternately: in each move, the current player chooses an index $i$ in the set $\{0,1,2,\ldots, p-1 \}$ that was not chosen before by either of the two players and then chooses an element $a_i$ from the set $\{0,1,2,3,4,5,6,7,8,9\}$. Eduardo has the first move. The game ends after all the indices have been chosen .Then the following number is computed:
$$M=a_0+a_110+a_210^2+\cdots+a_{p-1}10^{p-1}= \sum_{i=0}^{p-1}a_i.10^i$$.
The goal of Eduardo is to make $M$ divisible by $p$, and the goal of Fernando is to prevent this.
Prove that Eduardo has a winning strategy.
[i]Proposed by Amine Natik, Morocco[/i]