This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

Russian TST 2015, P4

Let $p \geq 5$ be a prime number. Prove that there exists a positive integer $a < p-1$ such that neither of $a^{p-1}-1$ and $(a+1)^{p-1}-1$ is divisible by $p^{2}$ .

2022 Brazil EGMO TST, 3

A natural number is called [i]chaotigal [/i] if it and its successor both have the sum of their digits divisible by $2021$. How many digits are in the smallest chaotigal number?

Russian TST 2017, P1

Let's call a number of the form $x^3+y^2$ with natural $x, y$ [i]successful[/i]. Are there infinitely many natural $m$ such that among the numbers from $m + 1$ to $m + 2016^2$ exactly 2017 are successful?

2005 ITAMO, 2

Prove that among any $18$ consecutive positive integers not exceeding $2005$ there is at least one divisible by the sum of its digits.

2018 NZMOC Camp Selection Problems, 2

Find all pairs of integers $(a, b)$ such that $$a^2 + ab - b = 2018.$$

1997 Akdeniz University MO, 3

Let for all $k \in {\mathbb N}$ $k$'s sum of the digits is $T(k)$. If a natural number $n$ such that $T(n)=T(1997n)$, prove that $$9\mid n$$

2007 Estonia Team Selection Test, 3

Let $n$ be a natural number, $n > 2$. Prove that if $\frac{b^n-1}{b-1}$ is a prime power for some positive integer $b$ then $n$ is prime.

PEN A Problems, 47

Let $n$ be a positive integer with $n>1$. Prove that \[\frac{1}{2}+\cdots+\frac{1}{n}\] is not an integer.

2004 Croatia National Olympiad, Problem 4

A frog jumps on the coordinate lattice, starting from the point $(1,1)$, according to the following rules: (i) From point $(a,b)$ the frog can jump to either $(2a,b)$ or $(a,2b)$; (ii) If $a>b$, the frog can also jump from $(a,b)$ to $(a-b,b)$, while for $a<b$ it can jump from $(a,b)$ to $(a,b-a)$. Can the frog get to the point: (a) $(24,40)$; (b) $(40,60)$; (c) $(24,60)$; (d) $(200,4)$?

2024 Indonesia MO, 8

Let $n \ge 2$ be a positive integer. Suppose $a_1, a_2, \dots, a_n$ are distinct integers. For $k = 1, 2, \dots, n$, let \[ s_k := \prod_{\substack{i \not= k, \\ 1 \le i \le n}} |a_k - a_i|, \] i.e. $s_k$ is the product of all terms of the form $|a_k - a_i|$, where $i \in \{ 1, 2, \dots, n \}$ and $i \not= k$. Find the largest positive integer $M$ such that $M$ divides the least common multiple of $s_1, s_2, \dots, s_n$ for any choices of $a_1, a_2, \dots, a_n$.

2018 Chile National Olympiad, 4

Find all postitive integers n such that $$\left\lfloor \frac{n}{2} \right\rfloor \cdot \left\lfloor \frac{n}{3} \right\rfloor \cdot \left\lfloor \frac{n}{4} \right\rfloor=n^2$$ where $\lfloor x \rfloor$ represents the largest integer less than the real number $x$.

2021 Kyiv City MO Round 1, 7.3

Petryk factored the number $10^6 = 1000000$ as a product of $7$ distinct positive integers. Among all such factorings, find the one in which the largest of these $7$ factors is the smallest possible. [i]Proposed by Bogdan Rublov[/i]

2017 Korea National Olympiad, problem 5

Given a prime $p$, show that there exist two integers $a, b$ which satisfies the following. For all integers $m$, $m^3+ 2017am+b$ is not a multiple of $p$.

2017 Ecuador Juniors, 6

Find all primes $p$ such that $p^2- p + 1$ is a perfect cube.

2023 Brazil National Olympiad, 1

Show an infinite sequence $a_1, a_2, \ldots$ of integers with both of the following properties: • $a_i \neq 0$ for every positive integer $i$, that is, no term in the sequence is equal to zero; • for all positive integer $n$, $a_n + a_{2n} + \ldots + a_{2023n} = 0$.

VMEO III 2006 Shortlist, N5

Find all triples of integers $(x, y, z)$ such that $x^4 + 5y^4 = z^4$.

KoMaL A Problems 2017/2018, A. 720

We call a positive integer [i]lively[/i] if it has a prime divisor greater than $10^{10^{100}}$. Prove that if $S$ is an infinite set of lively positive integers, then it has an infinite subset $T$ with the property that the sum of the elements in any finite nonempty subset of $T$ is a lively number.

1979 Dutch Mathematical Olympiad, 2

Solve in $N$: $$\begin{cases} a^3=b^3+c^3+12a \\ a^2=5(b+c) \end{cases}$$

2009 Indonesia TST, 4

Prove that there exist infinitely many positive integers $ n$ such that $ n!$ is not divisible by $ n^2\plus{}1$.

2020 Jozsef Wildt International Math Competition, W27

Let $$P(x)=a_0x^n+a_1x^{n-1}+\ldots+a_n$$ where $a_0,\ldots,a_n$ are integers. Show that if $P$ takes the value $2020$ for four distinct integral values of $x$, then $P$ cannot take the value $2001$ for any integral value of $x$. [i]Proposed by Ángel Plaza[/i]

ABMC Accuracy Rounds, 2020

[b]p1.[/b] James has $8$ Instagram accounts, $3$ Facebook accounts, $4$ QQ accounts, and $3$ YouTube accounts. If each Instagram account has $19$ pictures, each Facebook account has $5$ pictures and $9$ videos, each QQ account has a total of $17$ pictures, and each YouTube account has $13$ videos and no pictures, how many pictures in total does James have in all these accounts? [b]p2.[/b] If Poonam can trade $7$ shanks for $4$ shinks, and she can trade $10$ shinks for $17$ shenks. How many shenks can Poonam get if she traded all of her $105$ shanks? [b]p3.[/b] Jerry has a bag with $3$ red marbles, $5$ blue marbles and $2$ white marbles. If Jerry randomly picks two marbles from the bag without replacement, the probability that he gets two different colors can be expressed as a fraction $\frac{m}{n}$ in lowest terms. What is $m + n$? [b]p4.[/b] Bob's favorite number is between $1200$ and $4000$, divisible by $5$, has the same units and hundreds digits, and the same tens and thousands digits. If his favorite number is even and not divisible by $3$, what is his favorite number? [b]p5.[/b] Consider a unit cube $ABCDEFGH$. Let $O$ be the center of the face $EFGH$. The length of $BO$ can be expressed in the form $\frac{\sqrt{a}}{b}$, where $a$ and $b$ are simplified to lowest terms. What is $a + b$? [b]p6.[/b] Mr. Eddie Wang is a crazy rich boss who owns a giant company in Singapore. Even though Mr. Wang appears friendly, he finds great joy in firing his employees. His immediately fires them when they say "hello" and/or "goodbye" to him. It is well known that $1/2$ of the total people say "hello" and/or "goodbye" to him everyday. If Mr. Wang had $2050$ employees at the end of yesterday, and he hires $2$ new employees at the beginning of each day, in how many days will Mr. Wang first only have $6$ employees left? [b]p7.[/b] In $\vartriangle ABC$, $AB = 5$, $AC = 6$. Let $D,E,F$ be the midpoints of $\overline{BC}$, $\overline{AC}$, $\overline{AB}$, respectively. Let $X$ be the foot of the altitude from $D$ to $\overline{EF}$. Let $\overline{AX}$ intersect $\overline{BC}$ at $Y$ . Given $DY = 1$, the length of $BC$ is $\frac{p}{q}$ for relatively prime positive integers $p, q$: Find $p + q$. [b]p8.[/b] Given $\frac{1}{2006} = \frac{1}{a} + \frac{1}{b}$ where $a$ is a $4$ digit positive integer and $b$ is a $6$ digit positive integer, find the smallest possible value of $b$. [b]p9.[/b] Pocky the postman has unlimited stamps worth $5$, $6$ and $7$ cents. However, his post office has two very odd requirements: On each envelope, an odd number of $7$ cent stamps must be used, and the total number of stamps used must also be odd. What is the largest amount of postage money Pocky cannot make with his stamps, in cents? [b]p10.[/b] Let $ABCDEF$ be a regular hexagon with side length $2$. Let $G$ be the midpoint of side $DE$. Now let $O$ be the intersection of $BG$ and $CF$. The radius of the circle inscribed in triangle $BOC$ can be expressed in the form $\frac{a\sqrt{b}-\sqrt{c}}{d} $ where $a$, $b$, $c$, $d$ are simplified to lowest terms. What is $a + b + c + d$? [b]p11.[/b] Estimation (Tiebreaker): What is the total number of characters in all of the participants' email addresses in the Accuracy Round? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2005 Romania Team Selection Test, 3

Let $n\geq 0$ be an integer and let $p \equiv 7 \pmod 8$ be a prime number. Prove that \[ \sum^{p-1}_{k=1} \left \{ \frac {k^{2^n}}p - \frac 12 \right\} = \frac {p-1}2 . \] [i]Călin Popescu[/i]

2012 AMC 10, 22

The sum of the first $m$ positive odd integers is $212$ more than the sum of the first $n$ positive even integers. What is the sum of all possible values of $n$? $ \textbf{(A)}\ 255 \qquad\textbf{(B)}\ 256 \qquad\textbf{(C)}\ 257 \qquad\textbf{(D)}\ 258 \qquad\textbf{(E)}\ 259 $

1994 Turkey Team Selection Test, 3

Find all integer pairs $(a,b)$ such that $a\cdot b$ divides $a^2+b^2+3$.

1996 Polish MO Finals, 2

Let $p(k)$ be the smallest prime not dividing $k$. Put $q(k) = 1$ if $p(k) = 2$, or the product of all primes $< p(k)$ if $p(k) > 2$. Define the sequence $x_0, x_1, x_2, ...$ by $x_0 = 1$, $x_{n+1} = \frac{x_np(x_n)}{q(x_n)}$. Find all $n$ such that $x_n = 111111$