Found problems: 15460
2020 JBMO Shortlist, 3
Find the largest integer $k$ ($k \ge 2$), for which there exists an integer $n$ ($n \ge k$) such that from any collection of $n$ consecutive positive integers one can always choose $k$ numbers, which verify the following conditions:
1. each chosen number is not divisible by $6$, by $7$, nor by $8$;
2. the positive difference of any two distinct chosen numbers is not divisible by at least one of the
numbers $6$, $7$, and $8$.
2019 China Team Selection Test, 4
Call a sequence of positive integers $\{a_n\}$ good if for any distinct positive integers $m,n$, one has
$$\gcd(m,n) \mid a_m^2 + a_n^2 \text{ and } \gcd(a_m,a_n) \mid m^2 + n^2.$$
Call a positive integer $a$ to be $k$-good if there exists a good sequence such that $a_k = a$. Does there exists a $k$ such that there are exactly $2019$ $k$-good positive integers?
2000 Moldova National Olympiad, Problem 3
Consider the sets $A_1=\{1\}$, $A_2=\{2,3,4\}$, $A_3=\{5,6,7,8,9\}$, etc. Let $b_n$ be the arithmetic mean of the smallest and the greatest element in $A_n$. Show that the number $\frac{2000}{b_1-1}+\frac{2000}{b_2-1}+\ldots+\frac{2000}{b_{2000}-1}$ is a prime integer.
1983 IMO Longlists, 70
Let $d_n$ be the last nonzero digit of the decimal representation of $n!$. Prove that $d_n$ is aperiodic; that is, there do not exist $T$ and $n_0$ such that for all $n \geq n_0, d_{n+T} = d_n.$
2015 Brazil National Olympiad, 4
Let $n$ be a integer and let $n=d_1>d_2>\cdots>d_k=1$ its positive divisors.
a) Prove that $$d_1-d_2+d_3-\cdots+(-1)^{k-1}d_k=n-1$$ iff $n$ is prime or $n=4$.
b) Determine the three positive integers such that $$d_1-d_2+d_3-...+(-1)^{k-1}d_k=n-4.$$
LMT Team Rounds 2021+, 3
Beter Pai wants to tell you his fastest $40$-line clear time in Tetris, but since he does not want Qep to realize she is
better at Tetris than he is, he does not tell you the time directly. Instead, he gives you the following requirements,
given that the correct time is t seconds:
$\bullet$ $t < 100$.
$\bullet$ $t$ is prime.
$\bullet$ $t -1$ has 5 proper factors.
$\bullet$ all prime factors of $t +1$ are single digits.
$\bullet$ $t -2$ is a multiple of $3$.
$\bullet$ $t +2$ has $2$ factors.
Find t.
Math Hour Olympiad, Grades 8-10, 2011
[u]Round 1 [/u]
[b]p1. [/b]Twelve people, some are knights and some are knaves, are sitting around a table.
Knaves always lie and knights always tell the truth. At some point they start up a conversation.
The first person says, “There are no knights around this table.”
The second says, “There is at most one knight at this table.”
The third – “There are at most two knights at the table.”
And so on until the 12th says, “There are at most eleven knights at the table.”
How many knights are at the table? Justify your answer.
[b]p2.[/b] Show that in the sequence $10017$, $100117$, $1001117$, $...$ all numbers are divisible by $53$.
[b]p3.[/b] Harry and Draco have three wands: a bamboo wand, a willow wand, and a cherry wand, all of the same length. They must perform a spell wherein they take turns picking a wand and breaking it into three parts – first Harry, then Draco, then Harry again. But in order for the spell to work, Harry has to make sure it is possible to form three triangles out of the pieces of the wands, where each triangle has a piece from each wand. How should he break the wands to ensure the success of the spell?
[b]p4.[/b] A $2\times 2\times 2$ cube has $4$ equal squares on each face. The squares that share a side are called neighbors (thus, each square has $4$ neighbors – see picture). Is it possible to write an integer in each square in such a way that the sum of each number with its $4$ neighbors is equal to $13$? If yes, show how. If no, explain why not.
[img]https://cdn.artofproblemsolving.com/attachments/8/4/0f7457f40be40398dee806d125ba26780f9d3a.png[/img]
[b]p5.[/b] Two girls are playing a game. The first player writes the letters $A$ or $B$ in a row, left to right, adding one letter on her turn. The second player switches any two letters after each move by the first player (the letters do not have to be adjacent), or does nothing, which also counts as a move. The game is over when each player has made $2011$ moves. Can the second player plan her moves so that the resulting letters form a palindrome? (A palindrome is a sequence that reads the same forward and backwards, e.g. $AABABAA$.)
[u]Round 2 [/u]
[b]p6.[/b] A red square is placed on a table. $2010$ white squares, each the same size as the red square, are then placed on the table in such a way that the red square is fully covered and the sides of every white square are parallel to the sides of the red square. Is it always possible to remove one of the white squares so the red square remains completely covered?
[b]p7.[/b] A computer starts with a given positive integer to which it randomly adds either $54$ or $77$ every second and prints the resulting sum after each addition. For example, if the computer is given the number $1$, then a possible output could be: $1$, $55$, $109$, $186$, $…$ Show that after finitely many seconds the computer will print a number whose last two digits are the same.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2007 Thailand Mathematical Olympiad, 16
What is the smallest positive integer with $24$ positive divisors?
2013 CHMMC (Fall), Individual
[b]p1.[/b] Compute
$$\sqrt{(\sqrt{63} +\sqrt{112} +\sqrt{175})(-\sqrt{63} +\sqrt{112} +\sqrt{175})(\sqrt{63}-\sqrt{112} +\sqrt{175})(\sqrt{63} +\sqrt{112} -\sqrt{175})}$$
[b]p2.[/b] Consider the set $S = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. How many distinct $3$-element subsets are there such that the sum of the elements in each subset is divisible by $3$?
[b]p3.[/b] Let $a^2$ and $b^2$ be two integers. Consider the triangle with one vertex at the origin, and the other two at the intersections of the circle $x^2 + y^2 = a^2 + b^2$ with the graph $ay = b|x|$. If the area of the triangle is numerically equal to the radius of the circle, what is this area?
[b]p4.[/b] Suppose $f(x) = x^3 + x - 1$ has roots $a$, $b$ and $c$. What is $$\frac{a^3}{1-a}+\frac{b^3}{1-b}+\frac{c^3}{1-c} ?$$
[b]p5.[/b] Lisa has a $2D$ rectangular box that is $48$ units long and $126$ units wide. She shines a laser beam into the box through one of the corners such that the beam is at a $45^o$ angle with respect to the sides of the box. Whenever the laser beam hits a side of the box, it is reflected perfectly, again at a $45^o$ angle. Compute the distance the laser beam travels until it hits one of the four corners of the box.
[b]p6.[/b] How many ways can we form a group with an odd number of members (plural) from $99$ people total?
Express your answer in the form $a^b + c$, where $a$, $b$, and $c$ are integers, and $a$ is prime.
[b]p7.[/b] Let $$S = \log_2 9 \log_3 16 \log_4 25 ...\log_{999} 1000000.$$ Compute the greatest integer less than or equal to $\log_2 S$.
[b]p8.[/b] A prison, housing exactly four hundred prisoners in four hundred cells numbered $1$-$400$, has a really messed-up warden. One night, when all the prisoners are asleep and all of their doors are locked, the warden toggles the locks on all of their doors (that is, if the door is locked, he unlocks the door, and if the door is unlocked, he locks it again), starting at door $1$ and ending at door $400$. The warden then toggles the lock on every other door starting at door $2$ ($2$, $4$, $6$, etc). After he has toggled the lock on every other door, the warden then toggles every third door (doors $3$, $6$, $9$, etc.), then every fourth door, etc., finishing by toggling every $400$th door (consisting of only the $400$th door). He then collapses in exhaustion.
Compute the number of prisoners who go free (that is, the number of unlocked doors) when they wake up the next morning.
[b]p9.[/b] Let $A$ and $B$ be fixed points on a $2$-dimensional plane with distance $AB = 1$. An ant walks on a straight line from point $A$ to some point $C$ on the same plane and finds that the distance from itself to $B$ always decreases at any time during this walk. Compute the area of the locus of points where point $C$ could possibly be located.
[b]p10.[/b] A robot starts in the bottom left corner of a $4 \times 4$ grid of squares. How many ways can it travel to each square exactly once and then return to its start if it is only allowed to move to an adjacent (not diagonal) square at each step?
[b]p11.[/b] Assuming real values for $p$, $q$, $r$, and $s$, the equation $$x^4 + px^3 + qx^2 + rx + s$$ has four non-real roots. The sum of two of these roots is $4 + 7i$, and the product of the other two roots is $3 - 4i$. Find $q$.
[b]p12.[/b] A cube is inscribed in a right circular cone such that one face of the cube lies on the base of the cone. If the ratio of the height of the cone to the radius of the cone is $2 : 1$, what fraction of the cone's volume does the cube take up? Express your answer in simplest radical form.
[b]p13.[/b] Let $$y =\dfrac{1}{1 +\dfrac{1}{9 +\dfrac{1}{5 +\dfrac{1}{9 +\dfrac{1}{5 +...}}}}}$$
If $y$ can be represented as $\frac{a\sqrt{b} + c}{d}$, where $b$ is not divisible by the square of any prime, and the greatest common divisor of $a$ and $d$ is $1$, find the sum $a + b + c + d$.
[b]p14.[/b] Alice wants to paint each face of an octahedron either red or blue. She can paint any number of faces a particular color, including zero. Compute the number of ways in which she can do this. Two ways of painting the octahedron are considered the same if you can rotate the octahedron to get from one to the other.
[b]p15.[/b] Find $n$ in the equation $$133^5 + 110^5 + 84^5 + 27^5 = n^5,$$ where $n$ is an integer less than $170$.
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2022 China Second Round A1, 3
Does there exist an infinite set $S$ consisted of positive integers,so that for any $x,y,z,w\in S,x<y,z<w$,if $(x,y)\ne (z,w)$,then $\gcd(xy+2022,zw+2022)=1$?
2016 Brazil Undergrad MO, 3
Let it \(k \geq 1\) be an integer. Define the sequence \((a_n)_{n \geq 1}\) by \(a_0=0,a_1=1\) and
\[ a_{n+2} = ka_{n+1}+a_n \]
for \(n \geq 0\).
Let it \(p\) an odd prime number.
Denote \(m(p)\) as the smallest positive integer \(m\) such that \(p | a_m\).
Denote \(T(p)\) as the smallest positive integer \(T\) such that for every natural \(j\) we gave \(p | (a_{T+j}-a_j)\).
[list='i']
[*] Show that \(T(p) \leq (p-1) \cdot m(p)\).
[*] Show that if \(T(p) = (p-1) \cdot m(p)\) then
\[ \prod_{1 \leq j \leq T(p)-1}^{j \not \equiv 0 \pmod{m(p)}}{a_j} \equiv (-1)^{m(p)-1} \pmod{p} \]
[/list]
2017 IFYM, Sozopol, 1
Find all prime numbers $p$, for which there exist $x, y \in \mathbb{Q}^+$ and $n \in \mathbb{N}$, satisfying
$x+y+\frac{p}{x}+\frac{p}{y}=3n$.
2024 Al-Khwarizmi IJMO, 8
Three positive integers are written on the board. In every minute, instead of the numbers $a, b, c$, Elbek writes $a+\gcd(b,c), b+\gcd(a,c), c+\gcd(a,b)$ . Prove that there will be two numbers on the board after some minutes, such that one is divisible by the other.
Note. $\gcd(x,y)$ - Greatest common divisor of numbers $x$ and $y$
[i]Proposed by Sergey Berlov, Russia[/i]
2015 Caucasus Mathematical Olympiad, 5
Let's call a natural number a palindrome, the decimal notation of which is equally readable from left to right and right to left (decimal notation cannot start from zero; for example, the number $1221$ is a palindrome, but the numbers $1231, 1212$ and $1010$ are not). Which palindromes among the numbers from $10,000$ to $999,999$ have an odd sum of digits, which have an one even, and how many times are the ones with odd sum more than the ones with the even sum?
2013 Kazakhstan National Olympiad, 1
Find all triples of positive integer $(m,n,k)$ such that $ k^m|m^n-1$ and $ k^n|n^m-1$
2022-IMOC, N1
Find all positive integer $n$ such that for all $i=1,2,\cdots,n$, $\frac{n!}{i!(n-i+1)!}$ is an integer.
[i]Proposed by ckliao914[/i]
2020-21 KVS IOQM India, 23
Find the largest positive integer $N$ such that the number of integers In the set ${1,2,3,...,N}$ which are divisible by $3$ is equal to the number of integers which are divisible by $5$ or $7$ (or both),
2012 BMT Spring, 7
Let $ a $ , $ b $ , $ c $ , $ d $ , $ (a + b + c + 18 + d) $ , $ (a + b + c + 18 - d) $ , $ (b + c) $ , and $ (c + d) $ be distinct prime numbers such that $ a + b + c = 2010 $, $ a $, $ b $, $ c $, $ d \neq 3 $ , and $ d \le 50 $. Find the maximum value of the difference between two of these prime numbers.
2011 Puerto Rico Team Selection Test, 1
The product of 22 integers is 1. Show that their sum can not be 0.
2022 Philippine MO, 2
The PMO Magician has a special party game. There are $n$ chairs, labelled $1$ to $n$. There are $n$ sheets of paper, labelled $1$ to $n$.
[list]
[*] On each chair, she attaches exactly one sheet whose number does not match the number on the chair.
[*] She then asks $n$ party guests to sit on the chairs so that each chair has exactly one occupant.
[*] Whenever she claps her hands, each guest looks at the number on the sheet attached to their current chair, and moves to the chair labelled with that number.
[/list]
Show that if $1 < m \leq n$, where $m$ is not a prime power, it is always possible for the PMO Magician to choose which sheet to attach to each chair so that everyone returns to their original seats after exactly $m$ claps.
2015 Bundeswettbewerb Mathematik Germany, 2
A sum of $335$ pairwise distinct positive integers equals $100000$.
a) What is the least number of uneven integers in that sum?
b) What is the greatest number of uneven integers in that sum?
2002 Estonia National Olympiad, 3
John takes seven positive integers $a_1,a_2,...,a_7$ and writes the numbers $a_i a_j$, $a_i+a_j$ and $|a_i -a_j |$ for all $i \ne j$ on the blackboard. Find the greatest possible number of distinct odd integers on the blackboard.
2007 China Northern MO, 3
Let $ n$ be a positive integer and $ [ \ n ] = a.$ Find the largest integer $ n$ such that the following two conditions are satisfied:
$ (1)$ $ n$ is not a perfect square;
$ (2)$ $ a^{3}$ divides $ n^{2}$.
2010 Contests, 3
Let $N$ be the number of ordered 5-tuples $(a_{1}, a_{2}, a_{3}, a_{4}, a_{5})$ of positive integers satisfying
$\frac{1}{a_{1}}+\frac{1}{a_{2}}+\frac{1}{a_{3}}+\frac{1}{a_{4}}+\frac{1}{a_{5}}=1$
Is $N$ even or odd?
Oh and [b]HINTS ONLY[/b], please do not give full solutions. Thanks.
JOM 2015, 4
Given a natural number $n\ge 3$, determine all strictly increasing sequences $a_1<a_2<\cdots<a_n$ such that $\text{gcd}(a_1,a_2)=1$ and for any pair of natural numbers $(k,m)$ satisfy $n\ge m\ge 3$, $m\ge k$, $$\frac{a_1+a_2+\cdots +a_m}{a_k}$$ is a positive integer.