Found problems: 15460
2024 Indonesia TST, 3
Let $a_1<a_2<a_3<\dots$ be positive integers such that $a_{k+1}$ divides $2(a_1+a_2+\dots+a_k)$ for every $k\geqslant 1$. Suppose that for infinitely many primes $p$, there exists $k$ such that $p$ divides $a_k$. Prove that for every positive integer $n$, there exists $k$ such that $n$ divides $a_k$.
2013 Purple Comet Problems, 26
The diagram below shows the first three figures of a sequence of figures. The first figure shows an equilateral triangle $ABC$ with side length $1$. The leading edge of the triangle going in a clockwise direction around $A$ is labeled $\overline{AB}$ and is darkened in on the figure. The second figure shows the same equilateral triangle with a square with side length $1$ attached to the leading clockwise edge of the triangle. The third figure shows the same triangle and square with a regular pentagon with side length $1$ attached to the leading clockwise edge of the square. The fourth figure in the sequence will be formed by attaching a regular hexagon with side length $1$ to the leading clockwise edge of the pentagon. The hexagon will overlap the triangle. Continue this sequence through the eighth figure. After attaching the last regular figure (a regular decagon), its leading clockwise edge will form an angle of less than $180^\circ$ with the side $\overline{AC}$ of the equilateral triangle. The degree measure of that angle can be written in the form $\tfrac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
[asy]
size(250);
defaultpen(linewidth(0.7)+fontsize(10));
pair x[],y[],z[];
x[0]=origin;
x[1]=(5,0);
x[2]=rotate(60,x[0])*x[1];
draw(x[0]--x[1]--x[2]--cycle);
for(int i=0;i<=2;i=i+1)
{
y[i]=x[i]+(15,0);
}
y[3]=rotate(90,y[0])*y[2];
y[4]=rotate(-90,y[2])*y[0];
draw(y[0]--y[1]--y[2]--y[0]--y[3]--y[4]--y[2]);
for(int i=0;i<=4;i=i+1)
{
z[i]=y[i]+(15,0);
}
z[5]=rotate(108,z[4])*z[2];
z[6]=rotate(108,z[5])*z[4];
z[7]=rotate(108,z[6])*z[5];
draw(z[0]--z[1]--z[2]--z[0]--z[3]--z[4]--z[2]--z[7]--z[6]--z[5]--z[4]);
dot(x[2]^^y[2]^^z[2],linewidth(3));
draw(x[2]--x[0]^^y[2]--y[4]^^z[2]--z[7],linewidth(1));
label("A",(x[2].x,x[2].y-.3),S);
label("B",origin,S);
label("C",x[1],S);[/asy]
2012 Brazil Team Selection Test, 2
Let $a_1, a_2,..., a_n$ be positive integers and $a$ positive integer greater than $1$ which is a multiple of the product $a_1a_2...a_n$. Prove that $a^{n+1} + a - 1$ is not divisible by $(a + a_1 -1)(a + a_2 - 1) ... (a + a_n -1)$.
2007 Baltic Way, 16
Let $a$ and $b$ be rational numbers such that $s=a+b=a^2+b^2$. Prove that $s$ can be written as a fraction where the denominator is relatively prime to $6$.
2011 Argentina National Olympiad, 5
Find all integers $n$ such that $1<n<10^6$ and $n^3-1$ is divisible by $10^6 n-1$.
OMMC POTM, 2022 9
For positive integers $a_1 < a_2 < \dots < a_n$ prove that $$\frac{1}{\operatorname{lcm}(a_1, a_2)}+\frac{1}{\operatorname{lcm}(a_2, a_3)}+\dots+\frac{1}{\operatorname{lcm}(a_{n-1}, a_n)} \leq 1-\frac{1}{2^{n-1}}.$$
[i]Proposed by Evan Chang (squareman), USA[/i]
2005 Paraguay Mathematical Olympiad, 1
With the digits $1, 2, 3,. . . . . . , 9$ three-digit numbers are written such that the sum of the three digits is $17$. How many numbers can be written?
2017 IMAR Test, 2
For every $k\leq n$ define $r_k$ the residue of $2^n$ modulo $k$. Prove that $\sum r_i> \frac{n*log_2(\frac{n}{3})}{2}-n$, for any $n\geq 2$
2010 Dutch BxMO TST, 5
For any non-negative integer $n$, we say that a permutation $(a_0,a_1,...,a_n)$ of $\{0,1,..., n\} $ is quadratic if $k + a_k$ is a square for $k = 0, 1,...,n$. Show that for any non-negative integer $n$, there exists a quadratic permutation of $\{0,1,..., n\}$.
1995 All-Russian Olympiad Regional Round, 10.2
Natural numbers $m$ and $n$ satisfy $$gcd(m,n)+lcm(m,n) = m+n. $$Prove that one of numbers $m,n$ divides the other.
2007 Pre-Preparation Course Examination, 17
For a positive integer $n$, denote $rad(n)$ as product of prime divisors of $n$. And also $rad(1)=1$. Define the sequence $\{a_i\}_{i=1}^{\infty}$ in this way: $a_1 \in \mathbb N$ and for every $n \in \mathbb N$, $a_{n+1}=a_n+rad(a_n)$.
Prove that for every $N \in \mathbb N$, there exist $N$ consecutive terms of this sequence which are in an arithmetic progression.
PEN A Problems, 23
(Wolstenholme's Theorem) Prove that if \[1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{p-1}\] is expressed as a fraction, where $p \ge 5$ is a prime, then $p^{2}$ divides the numerator.
2019 PUMaC Combinatorics B, 2
Suppose Alan, Michael, Kevin, Igor, and Big Rahul are in a running race. It is given that exactly one pair of people tie (for example, two people both get second place), so that no other pair of people end in the same position. Each competitor has equal skill; this means that each outcome of the race, given that exactly two people tie, is equally likely. The probability that Big Rahul gets first place (either by himself or he ties for first) can be expressed in the form $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Compute $m+n$.
2012 Bogdan Stan, 2
For any $ a\in\mathbb{Z}_{\ge 0} $ make the notation $ a\mathbb{Z}_{\ge 0} =\{ an| n\in\mathbb{Z}_{\ge 0} \} . $ Prove that the following relations are equivalent:
$ \text{(1)} a\mathbb{Z}_{\ge 0} \setminus b\mathbb{Z}_{\ge 0}\subset c\mathbb{Z}_{\ge 0} \setminus d\mathbb{Z}_{\ge 0} $
$ \text{(2)} b|a\text{ or } (c|a\text{ and } \text{lcm} (a,b) |\text{lcm} (a,d)) $
[i]Marin Tolosi[/i] and [i]Cosmin Nitu[/i]
2022 CHMMC Winter (2022-23), 6
Let $A$ be a set of $8$ elements, and $B := (B_1,...,B_7)$ be an ordered $7$-tuple of subsets of $A$. Let $N$ be the number of such $7$-tuples $B$ such that there exists a unique $4$-element subset $I \subseteq \{1,2,...,7\}$ for which the intersection $\cap _{ i\in I} B_i$ is nonempty. Find the remainder when $N$ is divided by $67$.
2013 Saudi Arabia BMO TST, 5
We call a positive integer [i]good[/i ] if it doesn’t have a zero digit and the sum of the squares of its digits is a perfect square. For example, $122$ and $34$ are good and $304$ and $12$ are not not good. Prove that there exists a $n$-digit good number for every positive integer $n$.
2025 Bulgarian Winter Tournament, 10.4
The function $f: \mathbb{Z}_{>0} \times \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ is such that $f(a,b) + f(b,c) = f(ac, b^2) + 1$ for any positive integers $a,b,c$. Assume there exists a positive integer $n$ such that $f(n, m) \leq f(n, m + 1)$ for all positive integers $m$. Determine all possible values of $f(2025, 2025)$.
1989 Greece Junior Math Olympiad, 1
Let $A$ be the sum of three consecutive integers and $B$ be the sum of the exact three consecutive integers. Is it possible to have $AB=33333$ ?
Kvant 2020, M2616
Let $p>5$ be a prime number. Prove that the sum \[\left(\frac{(p-1)!}{1}\right)^p+\left(\frac{(p-1)!}{2}\right)^p+\cdots+\left(\frac{(p-1)!}{p-1}\right)^p\]is divisible by $p^3$.
2020 Thailand TSTST, 5
Let $\{a_n\}$ be a sequence of positive integers such that $a_{n+1} = a_n^2+1$ for all $n \geq 1$. Prove that there is no positive integer $N$ such that $$\prod_{k=1}^N(a_k^2+a_k+1)$$ is a perfect square.
1995 Tournament Of Towns, (482) 6
Does there exist an increasing arithmetic progression of
(a) $11$
(b) $10000$
(c) infinitely many
positive integers such that the sums of their digits in base $10$ also form an increasing arithmetic progression?
(A Shapovalov)
2011 Junior Balkan Team Selection Tests - Romania, 3
a) Prove that if the sum of the non-zero digits $a_1, a_2, ... , a_n$ is a multiple of $27$, then it is possible to permute these digits in order to obtain an $n$-digit number that is a multiple of $27$.
b) Prove that if the non-zero digits $a_1, a_2, ... , a_n$ have the property that every ndigit number obtained by permuting these digits is a multiple of $27$, then the sum of these digits is a multiple of $27$
2006 Germany Team Selection Test, 2
Find all positive integers $ n$ such that there exists a unique integer $ a$ such that $ 0\leq a < n!$ with the following property:
\[ n!\mid a^n \plus{} 1
\]
[i]Proposed by Carlos Caicedo, Colombia[/i]
1983 IMO Longlists, 4
Let $n$ be a positive integer. Let $\sigma(n)$ be the sum of the natural divisors $d$ of $n$ (including $1$ and $n$). We say that an integer $m \geq 1$ is [i]superabundant[/i] (P.Erdos, $1944$) if $\forall k \in \{1, 2, \dots , m - 1 \}$, $\frac{\sigma(m)}{m} >\frac{\sigma(k)}{k}.$
Prove that there exists an infinity of [i]superabundant[/i] numbers.
2018 Hanoi Open Mathematics Competitions, 5
Find all $3$-digit numbers $\overline{abc}$ ($a,b \ne 0$) such that $\overline{bcd} \times a = \overline{1a4d}$ for some integer $d$ from $1$ to $9$