This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

1976 IMO Longlists, 4

Find all pairs of natural numbers $(m, n)$ for which $2^m3^n +1$ is the square of some integer.

1999 IMO Shortlist, 4

Denote by S the set of all primes such the decimal representation of $\frac{1}{p}$ has the fundamental period divisible by 3. For every $p \in S$ such that $\frac{1}{p}$ has the fundamental period $3r$ one may write \[\frac{1}{p}=0,a_{1}a_{2}\ldots a_{3r}a_{1}a_{2} \ldots a_{3r} \ldots , \] where $r=r(p)$; for every $p \in S$ and every integer $k \geq 1$ define $f(k,p)$ by \[ f(k,p)= a_{k}+a_{k+r(p)}+a_{k+2.r(p)}\] a) Prove that $S$ is infinite. b) Find the highest value of $f(k,p)$ for $k \geq 1$ and $p \in S$

2025 CMIMC Algebra/NT, 10

Let $a_n$ be a recursively defined sequence with $a_0=2024$ and $a_{n+1}=a_n^3+5a_n^2+10a_n+6$ for $n\ge 0.$ Determine the value of $$\sum_{n=0}^{\infty} \frac{2^n(a_n+1)}{a_n^2+3a_n+4}.$$

2012 All-Russian Olympiad, 3

Initially, ten consecutive natural numbers are written on the board. In one turn, you may pick any two numbers from the board (call them $a$ and $b$) and replace them with the numbers $a^2-2011b^2$ and $ab$. After several turns, there were no initial numbers left on the board. Could there, at this point, be again, ten consecutive natural numbers?

2022 HMNT, 10

Compute the number of distinct pairs of the form \[(\text{first three digits of }x,\text{ first three digits of }x^4)\] over all integers $x>10^{10}$. For example, one such pair is $(100,100)$ when $x=10^{10^{10}}$.

2009 Jozsef Wildt International Math Competition, W. 11

Tags: set , number theory
Find all real numbers $m$ such that $$\frac{1-m}{2m} \in \{x\ |\ m^2x^4+3mx^3+2x^2+x=1\ \forall \ x\in \mathbb{R} \}$$

2006 IberoAmerican, 1

Find all pairs $(a,\, b)$ of positive integers such that $2a-1$ and $2b+1$ are coprime and $a+b$ divides $4ab+1.$

2011 Purple Comet Problems, 28

Pictured below is part of a large circle with radius $30$. There is a chain of three circles with radius $3$, each internally tangent to the large circle and each tangent to its neighbors in the chain. There are two circles with radius $2$ each tangent to two of the radius $3$ circles. The distance between the centers of the two circles with radius $2$ can be written as $\textstyle\frac{a\sqrt b-c}d$, where $a,b,c,$ and $d$ are positive integers, $c$ and $d$ are relatively prime, and $b$ is not divisible by the square of any prime. Find $a+b+c+d$. [asy] size(200); defaultpen(linewidth(0.5)); real r=aCos(79/81); pair x=dir(270+r)*27,y=dir(270-r)*27; draw(arc(origin,30,210,330)); draw(circle(x,3)^^circle(y,3)^^circle((0,-27),3)); path arcl=arc(y,5,0,180), arcc=arc((0,-27),5,0,180), arcr=arc(x,5,0,180); pair centl=intersectionpoint(arcl,arcc), centr=intersectionpoint(arcc,arcr); draw(circle(centl,2)^^circle(centr,2)); dot(x^^y^^(0,-27)^^centl^^centr,linewidth(2)); [/asy]

2019 District Olympiad, 4

Find all positive integers $p$ for which there exists a positive integer $n$ such that $p^n+3^n~|~p^{n+1}+3^{n+1}.$

2008 Junior Balkan Team Selection Tests - Romania, 3

Find all pairs $ (m,n)$ of integer numbers $ m,n > 1$ with property that $ mn \minus{} 1\mid n^3 \minus{} 1$.

2020 Polish Junior MO First Round, 6.

Let $a$, $b$ $c$ be the natural numbers, such that every digit occurs exactly the same number of times in each of the numbers $a$, $b$, $c$. Is it possible that $a + b + c = 10^{1001}$? Justify your answer.

Kvant 2020, M2624

Integers $a_1, a_2, \ldots, a_n$ satisfy $$1<a_1<a_2<\ldots < a_n < 2a_1.$$ If $m$ is the number of distinct prime factors of $a_1a_2\cdots a_n$, then prove that $$(a_1a_2\cdots a_n)^{m-1}\geq (n!)^m.$$

2011 Iran MO (3rd Round), 3

Let $k$ be a natural number such that $k\ge 7$. How many $(x,y)$ such that $0\le x,y<2^k$ satisfy the equation $73^{73^x}\equiv 9^{9^y} \pmod {2^k}$? [i]Proposed by Mahyar Sefidgaran[/i]

1969 IMO Longlists, 23

$(FRA 6)$ Consider the integer $d = \frac{a^b-1}{c}$, where $a, b$, and $c$ are positive integers and $c \le a.$ Prove that the set $G$ of integers that are between $1$ and $d$ and relatively prime to $d$ (the number of such integers is denoted by $\phi(d)$) can be partitioned into $n$ subsets, each of which consists of $b$ elements. What can be said about the rational number $\frac{\phi(d)}{b}?$

1992 Hungary-Israel Binational, 4

We examine the following two sequences: The Fibonacci sequence: $F_{0}= 0, F_{1}= 1, F_{n}= F_{n-1}+F_{n-2 }$ for $n \geq 2$; The Lucas sequence: $L_{0}= 2, L_{1}= 1, L_{n}= L_{n-1}+L_{n-2}$ for $n \geq 2$. It is known that for all $n \geq 0$ \[F_{n}=\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}},L_{n}=\alpha^{n}+\beta^{n},\] where $\alpha=\frac{1+\sqrt{5}}{2},\beta=\frac{1-\sqrt{5}}{2}$. These formulae can be used without proof. Prove that $F_{n-1}F_{n}F_{n+1}L_{n-1}L_{n}L_{n+1}(n \geq 2)$ is not a perfect square.

2022 Poland - Second Round, 5

Let $n$ be an positive integer. We call $n$ $\textit{good}$ when there exists positive integer $k$ s.t. $n=k(k+1)$. Does there exist 2022 pairwise distinct $\textit{good}$ numbers s.t. their sum is also $\textit{good}$ number?

2019 BmMT, Ind. Tie

[b]p1.[/b] If the pairwise sums of the three numbers $x$, $y$, and $z$ are $22$, $26$, and $28$, what is $x + y + z$? [b]p2.[/b] Suhas draws a quadrilateral with side lengths $7$, $15$, $20$, and $24$ in some order such that the quadrilateral has two opposite right angles. Find the area of the quadrilateral. [b]p3.[/b] Let $(n)*$ denote the sum of the digits of $n$. Find the value of $((((985^{998})*)*)*)*$. [b]p4.[/b] Everyone wants to know Andy's locker combination because there is a golden ticket inside. His locker combination consists of 4 non-zero digits that sum to an even number. Find the number of possible locker combinations that Andy's locker can have. [b]p5.[/b] In triangle $ABC$, $\angle ABC = 3\angle ACB$. If $AB = 4$ and $AC = 5$, compute the length of $BC$. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2003 France Team Selection Test, 2

A lattice point in the coordinate plane with origin $O$ is called invisible if the segment $OA$ contains a lattice point other than $O,A$. Let $L$ be a positive integer. Show that there exists a square with side length $L$ and sides parallel to the coordinate axes, such that all points in the square are invisible.

2023 Myanmar IMO Training, 4

Let $n$ be a positive integer and let $p$ be a prime number. Prove that if $a$, $b$, $c$ are integers (not necessarily positive) satisfying the equations \[ a^n + pb = b^n + pc = c^n + pa\] then $a = b = c$. [i]Proposed by Angelo Di Pasquale, Australia[/i]

EMCC Speed Rounds, 2010

[i]20 problems for 20 minutes. [/i] [b]p1.[/b] Evaluate $\frac{\sqrt2 \cdot \sqrt6}{\sqrt3}.$ [b]p2.[/b] If $6\%$ of a number is $1218$, what is $18\%$ of that number? [b]p3.[/b] What is the median of $\{42, 9, 8, 4, 5, 1,13666, 3\}$? [b]p4.[/b] Define the operation $\heartsuit$ so that $i\heartsuit u = 5i - 2u$. What is $3\heartsuit 4$? p5. How many $0.2$-inch by $1$-inch by $1$-inch gold bars can fit in a $15$-inch by $12$-inch by $9$-inch box? [b]p6.[/b] A tetrahedron is a triangular pyramid. What is the sum of the number of edges, faces, and vertices of a tetrahedron? [b]p7.[/b] Ron has three blue socks, four white socks, five green socks, and two black socks in a drawer. Ron takes socks out of his drawer blindly and at random. What is the least number of socks that Ron needs to take out to guarantee he will be able to make a pair of matching socks? [b]p8.[/b] One segment with length $6$ and some segments with lengths $10$, $8$, and $2$ form the three letters in the diagram shown below. Compute the sum of the perimeters of the three figures. [img]https://cdn.artofproblemsolving.com/attachments/1/0/9f7d6d42b1d68cd6554d7d5f8dd9f3181054fa.png[/img] [b]p9.[/b] How many integer solutions are there to the inequality $|x - 6| \le 4$? [b]p10.[/b] In a land for bad children, the flavors of ice cream are grass, dirt, earwax, hair, and dust-bunny. The cones are made out of granite, marble, or pumice, and can be topped by hot lava, chalk, or ink. How many ice cream cones can the evil confectioners in this ice-cream land make? (Every ice cream cone consists of one scoop of ice cream, one cone, and one topping.) [b]p11.[/b] Compute the sum of the prime divisors of $245 + 452 + 524$. [b]p12.[/b] In quadrilateral $SEAT$, $SE = 2$, $EA = 3$, $AT = 4$, $\angle EAT = \angle SET = 90^o$. What is the area of the quadrilateral? [b]p13.[/b] What is the angle, in degrees, formed by the hour and minute hands on a clock at $10:30$ AM? [b]p14.[/b] Three numbers are randomly chosen without replacement from the set $\{101, 102, 103,..., 200\}$. What is the probability that these three numbers are the side lengths of a triangle? [b]p15.[/b] John takes a $30$-mile bike ride over hilly terrain, where the road always either goes uphill or downhill, and is never flat. If he bikes a total of $20$ miles uphill, and he bikes at $6$ mph when he goes uphill, and $24$ mph when he goes downhill, what is his average speed, in mph, for the ride? [b]p16.[/b] How many distinct six-letter words (not necessarily in any language known to man) can be formed by rearranging the letters in $EXETER$? (You should include the word EXETER in your count.) [b]p17.[/b] A pie has been cut into eight slices of different sizes. Snow White steals a slice. Then, the seven dwarfs (Sneezy, Sleepy, Dopey, Doc, Happy, Bashful, Grumpy) take slices one by one according to the alphabetical order of their names, but each dwarf can only take a slice next to one that has already been taken. In how many ways can this pie be eaten by these eight persons? [b]p18.[/b] Assume that $n$ is a positive integer such that the remainder of $n$ is $1$ when divided by $3$, is $2$ when divided by $4$, is $3$ when divided by $5$, $...$ , and is $8$ when divided by $10$. What is the smallest possible value of $n$? [b]p19.[/b] Find the sum of all positive four-digit numbers that are perfect squares and that have remainder $1$ when divided by $100$. [b]p20.[/b] A coin of radius $1$ cm is tossed onto a plane surface that has been tiled by equilateral triangles with side length $20\sqrt3$ cm. What is the probability that the coin lands within one of the triangles? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2005 Chile National Olympiad, 4

Let $f(a)$ be the largest integer less than or equal to the fourth root of " $a$". Calculate $$f(1)+f(2)+...+f(2005).$$

2010 Saudi Arabia BMO TST, 4

Find all triples $(x,y, z)$ of integers such that $$\begin{cases} x^2y + y^2z + z^2x= 2010^2 \\ xy^2 + yz^2 + zx^2= -2010 \end{cases}$$

2014 Purple Comet Problems, 25

The diagram below shows equilateral $\triangle ABC$ with side length $2$. Point $D$ lies on ray $\overrightarrow{BC}$ so that $CD = 4$. Points $E$ and $F$ lie on $\overline{AB}$ and $\overline{AC}$, respectively, so that $E$, $F$, and $D$ are collinear, and the area of $\triangle AEF$ is half of the area of $\triangle ABC$. Then $\tfrac{AE}{AF}=\tfrac m n$, where $m$ and $n$ are relatively prime positive integers. Find $m + 2n$. [asy] import math; size(7cm); pen dps = fontsize(10); defaultpen(dps); dotfactor=4; pair A,B,C,D,E,F; B=origin; C=(2,0); D=(6,0); A=(1,sqrt(3)); E=(1/3,sqrt(3)/3); F=extension(A,C,E,D); draw(C--A--B--D,linewidth(1.1)); draw(E--D,linewidth(.7)); dot(A); dot(B); dot(C); dot(D); dot(E); dot(F); label("$A$",A,N); label("$B$",B,S); label("$C$",C,S); label("$D$",D,S); label("$E$",E,NW); label("$F$",F,NE); [/asy]

2010 India IMO Training Camp, 8

Call a positive integer [b]good[/b] if either $N=1$ or $N$ can be written as product of [i]even[/i] number of prime numbers, not necessarily distinct. Let $P(x)=(x-a)(x-b),$ where $a,b$ are positive integers. (a) Show that there exist distinct positive integers $a,b$ such that $P(1),P(2),\cdots ,P(2010)$ are all good numbers. (b) Suppose $a,b$ are such that $P(n)$ is a good number for all positive integers $n$. Prove that $a=b$.

1987 ITAMO, 1

Show that $3x^5 +5x^3 -8x$ is divisible by $120$ for any integer $x$