Found problems: 15460
2021 Nordic, 3
Let $n$ be a positive integer. Alice and Bob play the following game. First, Alice picks $n + 1$ subsets $A_1,...,A_{n+1}$ of $\{1,... ,2^n\}$ each of size $2^{n-1}$. Second, Bob picks $n + 1$ arbitrary integers $a_1,...,a_{n+1}$. Finally, Alice picks an integer $t$. Bob wins if there exists an integer $1 \le i \le n + 1$ and $s \in A_i$ such that $s + a_i \equiv t$ (mod $2^n$). Otherwise, Alice wins.
Find all values of $n$ where Alice has a winning strategy.
2017 Turkey Team Selection Test, 6
Prove that no pair of different positive integers $(m, n)$ exist, such that $\frac{4m^{2}n^{2}-1}{(m^{2}-n^2)^{2}}$ is an integer.
1985 IMO, 2
Let $n$ and $k$ be relatively prime positive integers with $k<n$. Each number in the set $M=\{1,2,3,\ldots,n-1\}$ is colored either blue or white. For each $i$ in $M$, both $i$ and $n-i$ have the same color. For each $i\ne k$ in $M$ both $i$ and $|i-k|$ have the same color. Prove that all numbers in $M$ must have the same color.
2005 All-Russian Olympiad Regional Round, 9.7
9.7 Is there an infinite arithmetic sequence $\{a_n\}\subset \mathbb N$ s.t. $a_n+...+a_{n+9}\mid a_n...a_{n+9}$ for all $n$?
([i]V. Senderov[/i])
2019 Saudi Arabia JBMO TST, 4
Let $p$ be a prime number. Show that $7^p+3p-4$ is not a perfect square.
2008 China National Olympiad, 1
Let $A$ be an infinite subset of $\mathbb{N}$, and $n$ a fixed integer. For any prime $p$ not dividing $n$, There are infinitely many elements of $A$ not divisible by $p$. Show that for any integer $m >1, (m,n) =1$, There exist finitely many elements of $A$, such that their sum is congruent to 1 modulo $m$ and congruent to 0 modulo $n$.
1952 Moscow Mathematical Olympiad, 226
Seven chips are numbered $1, 2, 3, 4, 5, 6, 7$. Prove that none of the seven-digit numbers formed by these chips is divisible by any other of these seven-digit numbers.
2007 Harvard-MIT Mathematics Tournament, 22
The sequence $\{a_n\}_{n\geq 1}$ is defined by $a_{n+2}=7a_{n+1}-a_n$ for positive integers $n$ with initial values $a_1=1$ and $a_2=8$. Another sequence, $\{b_n\}$, is defined by the rule $b_{n+2}=3b_{n+1}-b_n$ for positive integers $n$ together with the values $b_1=1$ and $b_2=2$. Find $\gcd(a_{5000},b_{501})$.
2022 Iran MO (3rd Round), 2
Find all functions $f:\mathbb{N}\to\mathbb{N}$ such that for all $x,y\in\mathbb{N}$:
$$0\le y+f(x)-f^{f(y)}(x)\le1$$
that here
$$f^n(x)=\underbrace{f(f(\ldots(f}_{n}(x))\ldots)$$
2023 Francophone Mathematical Olympiad, 4
Do there exist integers $a$ and $b$ such that none of the numbers $a,a+1,\ldots,a+2023,b,b+1,\ldots,b+2023$ divides any of the $4047$ other numbers, but $a(a+1)(a+2)\cdots(a+2023)$ divides $b(b+1)\cdots(b+2023)$?
1968 Polish MO Finals, 4
Given an integer $n > 2$, give an example of a set of $n$ mutually different numbers $a_1,...,a_n$ for which the set of their pairwise sums $a_i + a_j$ ($i \ne j$) contains as few different numbers as possible; also give an example of a set of n different numbers $b_1,...,b_n$ for which the set of their pairwise sums $b_i+b_j$ ($i \ne j$) contains as many different numbers as possible;
2016 APMC, 5
Let $f(n,k)$ with $n,k\in\mathbb Z_{\geq 2}$ be defined such that $\frac{(kn)!}{(n!)^{f(n,k)}}\in\mathbb Z$ and $\frac{(kn)!}{(n!)^{f(n,k)+1}}\not\in\mathbb Z$
Define $m(k)$ such that for all $k$, $n\geq m(k)\implies f(n,k)=k$. Show that $m(k)$ exists and furthermore that $m(k)\leq \mathcal{O}\left(k^2\right)$
DMM Team Rounds, 2013 (-14)
[b]p1.[/b] Suppose $5$ bales of hay are weighted two at a time in all possible ways. The weights obtained are $110$, $112$, $113$, $114$, $115$, $116$, $117$, $118$, $120$, $121$. What is the difference between the heaviest and the lightest bale?
[b]p2.[/b] Paul and Paula are playing a game with dice. Each have an $8$-sided die, and they roll at the same time. If the number is the same they continue rolling; otherwise the one who rolled a higher number wins. What is the probability that the game lasts at most $3$ rounds?
[b]p3[/b]. Find the unique positive integer $n$ such that $\frac{n^3+5}{n^2-1}$ is an integer.
[b]p4.[/b] How many numbers have $6$ digits, some four of which are $2, 0, 1, 4$ (not necessarily consecutive or in that order) and have the sum of their digits equal to $9$?
[b]p5.[/b] The Duke School has $N$ students, where $N$ is at most $500$. Every year the school has three sports competitions: one in basketball, one in volleyball, and one in soccer. Students may participate in all three competitions. A basketball team has $5$ spots, a volleyball team has $6$ spots, and a soccer team has $11$ spots on the team. All students are encouraged to play, but $16$ people choose not to play basketball, $9$ choose not to play volleyball and $5$ choose not to play soccer. Miraculously, other than that all of the students who wanted to play could be divided evenly into teams of the appropriate size. How many players are there in the school?
[b]p6.[/b] Let $\{a_n\}_{n\ge 1}$ be a sequence of real numbers such that $a_1 = 0$ and $a_{n+1} =\frac{a_n-\sqrt3}{\sqrt3 a_n+1}$ . Find $a_1 + a_2 +.. + a_{2014}$.
[b]p7.[/b] A soldier is fighting a three-headed dragon. At any minute, the soldier swings her sword, at which point there are three outcomes: either the soldier misses and the dragon grows a new head, the soldier chops off one head that instantaneously regrows, or the soldier chops off two heads and none grow back. If the dragon has at least two heads, the soldier is equally likely to miss or chop off two heads. The dragon dies when it has no heads left, and it overpowers the soldier if it has at least five heads. What is the probability that the soldier wins
[b]p8.[/b] A rook moves alternating horizontally and vertically on an infinite chessboard. The rook moves one square horizontally (in either direction) at the first move, two squares vertically at the second, three horizontally at the third and so on. Let $S$ be the set of integers $n$ with the property that there exists a series of moves such that after the $n$-th move the rock is back where it started. Find the number of elements in the set $S \cap \{1, 2, ..., 2014\}$.
[b]p9.[/b] Find the largest integer $n$ such that the number of positive integer divisors of $n$ (including $1$ and $n$) is at least $\sqrt{n}$.
[b]p10.[/b] Suppose that $x, y$ are irrational numbers such that $xy$, $x^2 + y$, $y^2 + x$ are rational numbers. Find $x + y$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2020 LIMIT Category 2, 12
Let $A$ be the set $\{k^{19}-k: 1<k<20, k\in N\}$. Let $G$ be the GCD of all elements of $A$.
Then the value of $G$ is?
2015 District Olympiad, 1
Determine all natural numbers $ \overline{ab} $ with $ a<b $ which are equal with the sum of all the natural numbers between $ a $ and $ b, $ inclusively.
2018 China Western Mathematical Olympiad, 3
Let $M = \{1,2,\cdots , 10\}$, and let $T$ be a set of 2-element subsets of $M$. For any two different elements $\{a,b\}, \{x,y\}$ in $T$, the integer $(ax+by)(ay+bx)$ is not divisible by 11. Find the maximum size of $T$.
2011 Singapore Junior Math Olympiad, 4
Any positive integer $n$ can be written in the form $n = 2^aq$, where $a \ge 0$ and $q$ is odd. We call $q$ the [i]odd part[/i] of $n$. Define the sequence $a_0,a_1,...$ as follows: $a_0 = 2^{2011}-1$ and for $m > 0, a_{m+i}$ is the odd part of $3a_m + 1$. Find $a_{2011}$.
2016 European Mathematical Cup, 1
Is there a sequence $a_{1}, . . . , a_{2016}$ of positive integers, such that every sum
$$a_{r} + a_{r+1} + . . . + a_{s-1} + a_{s}$$ (with $1 \le r \le s \le 2016$) is a composite number, but:
a) $GCD(a_{i}, a_{i+1}) = 1$ for all $i = 1, 2, . . . , 2015$;
b) $GCD(a_{i}, a_{i+1}) = 1$ for all $i = 1, 2, . . . , 2015$ and $GCD(a_{i}, a_{i+2}) = 1$ for all $i = 1, 2, . . . , 2014$?
$GCD(x, y)$ denotes the greatest common divisor of $x$, $y$.
Proposed by Matija Bucić
2012 Princeton University Math Competition, B1
When some number $a^2$ is written in base $b$, the result is $144_b$. $a$ and $b$ also happen to be integer side lengths of a right triangle. If $a$ and $b$ are both less than $20$, find the sum of all possible values of $a$.
2018 India PRMO, 18
If $a, b, c \ge 4$ are integers, not all equal, and $4abc = (a+3)(b+3)(c+3)$ then what is the value of $a+b+c$ ?
2024 Tuymaada Olympiad, 1
Prove that a positive integer of the form $n^4 +1$ can have more than $1000$ divisors of the form $a^4 +1$ with integral $a$.
2000 Junior Balkan Team Selection Tests - Moldova, 2
The number $665$ is represented as a sum of $18$ natural numbers nenule $a_1, a_2, ..., a_{18}$.
Determine the smallest possible value of the smallest common multiple of the numbers $a_1, a_2, ..., a_{18}$.
2013 Bulgaria National Olympiad, 1
Find all prime numbers $p,q$, for which $p^{q+1}+q^{p+1}$ is a perfect square.
[i]Proposed by P. Boyvalenkov[/i]
2018 Singapore Junior Math Olympiad, 1
Consider the integer $30x070y03$ where $x, y$ are unknown digits. Find all possible values of $x, y$ so that the given integer is a multiple of $37$.
2007 Germany Team Selection Test, 3
For all positive integers $n$, show that there exists a positive integer $m$ such that $n$ divides $2^{m} + m$.
[i]Proposed by Juhan Aru, Estonia[/i]