This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15460

2023 Brazil EGMO TST -wrong source, 4

The sequence of positive integers $a_1,a_2,a_3,\dots$ is [i]brazilian[/i] if $a_1=1$ and $a_n$ is the least integer greater than $a_{n-1}$ and $a_n$ is [b]coprime[/b] with at least half elements of the set $\{a_1,a_2,\dots, a_{n-1}\}$. Is there any odd number which does [b]not[/b] belong to the brazilian sequence?

1998 Vietnam Team Selection Test, 2

Let $d$ be a positive divisor of $5 + 1998^{1998}$. Prove that $d = 2 \cdot x^2 + 2 \cdot x \cdot y + 3 \cdot y^2$, where $x, y$ are integers if and only if $d$ is congruent to 3 or 7 $\pmod{20}$.

LMT Speed Rounds, 2019 S

[b]p1.[/b] Compute $2020 \cdot \left( 2^{(0\cdot1)} + 9 - \frac{(20^1)}{8}\right)$. [b]p2.[/b] Nathan has five distinct shirts, three distinct pairs of pants, and four distinct pairs of shoes. If an “outfit” has a shirt, pair of pants, and a pair of shoes, how many distinct outfits can Nathan make? [b]p3.[/b] Let $ABCD$ be a rhombus such that $\vartriangle ABD$ and $\vartriangle BCD$ are equilateral triangles. Find the angle measure of $\angle ACD$ in degrees. [b]p4.[/b] Find the units digit of $2019^{2019}$. [b]p5.[/b] Determine the number of ways to color the four vertices of a square red, white, or blue if two colorings that can be turned into each other by rotations and reflections are considered the same. [b]p6.[/b] Kathy rolls two fair dice numbered from $1$ to $6$. At least one of them comes up as a $4$ or $5$. Compute the probability that the sumof the numbers of the two dice is at least $10$. [b]p7.[/b] Find the number of ordered pairs of positive integers $(x, y)$ such that $20x +19y = 2019$. [b]p8.[/b] Let $p$ be a prime number such that both $2p -1$ and $10p -1$ are prime numbers. Find the sum of all possible values of $p$. [b]p9.[/b] In a square $ABCD$ with side length $10$, let $E$ be the intersection of $AC$ and $BD$. There is a circle inscribed in triangle $ABE$ with radius $r$ and a circle circumscribed around triangle $ABE$ with radius $R$. Compute $R -r$ . [b]p10.[/b] The fraction $\frac{13}{37 \cdot 77}$ can be written as a repeating decimal $0.a_1a_2...a_{n-1}a_n$ with $n$ digits in its shortest repeating decimal representation. Find $a_1 +a_2 +...+a_{n-1}+a_n$. [b]p11.[/b] Let point $E$ be the midpoint of segment $AB$ of length $12$. Linda the ant is sitting at $A$. If there is a circle $O$ of radius $3$ centered at $E$, compute the length of the shortest path Linda can take from $A$ to $B$ if she can’t cross the circumference of $O$. [b]p12.[/b] Euhan and Minjune are playing tennis. The first one to reach $25$ points wins. Every point ends with Euhan calling the ball in or out. If the ball is called in, Minjune receives a point. If the ball is called out, Euhan receives a point. Euhan always makes the right call when the ball is out. However, he has a $\frac34$ chance of making the right call when the ball is in, meaning that he has a $\frac14$ chance of calling a ball out when it is in. The probability that the ball is in is equal to the probability that the ball is out. If Euhan won, determine the expected number of wrong callsmade by Euhan. [b]p13.[/b] Find the number of subsets of $\{1, 2, 3, 4, 5, 6,7\}$ which contain four consecutive numbers. [b]p14.[/b] Ezra and Richard are playing a game which consists of a series of rounds. In each round, one of either Ezra or Richard receives a point. When one of either Ezra or Richard has three more points than the other, he is declared the winner. Find the number of games which last eleven rounds. Two games are considered distinct if there exists a round in which the two games had different outcomes. [b]p15.[/b] There are $10$ distinct subway lines in Boston, each of which consists of a path of stations. Using any $9$ lines, any pair of stations are connected. However, among any $8$ lines there exists a pair of stations that cannot be reached from one another. It happens that the number of stations is minimized so this property is satisfied. What is the average number of stations that each line passes through? [b]p16.[/b] There exist positive integers $k$ and $3\nmid m$ for which $$1 -\frac12 + \frac13 - \frac14 +...+ \frac{1}{53}-\frac{1}{54}+\frac{1}{55}=\frac{3^k \times m}{28\times 29\times ... \times 54\times 55}.$$ Find the value $k$. [b]p17.[/b] Geronimo the giraffe is removing pellets from a box without replacement. There are $5$ red pellets, $10$ blue pellets, and $15$ white pellets. Determine the probability that all of the red pellets are removed before all the blue pellets and before all of the white pellets are removed. [b]p18.[/b] Find the remainder when $$70! \left( \frac{1}{4 \times 67}+ \frac{1}{5 \times 66}+...+ \frac{1}{66\times 5}+ \frac{1}{67\times 4} \right)$$ is divided by $71$. [b]p19.[/b] Let $A_1A_2...A_{12}$ be the regular dodecagon. Let $X$ be the intersection of $A_1A_2$ and $A_5A_{11}$. Given that $X A_2 \cdot A_1A_2 = 10$, find the area of dodecagon. [b]p20.[/b] Evaluate the following infinite series: $$\sum^{\infty}_{n=1}\sum^{\infty}_{m=1} \frac{n \sec^2m -m \tan^2 n}{3^{m+n}(m+n)}$$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2021 Saudi Arabia Training Tests, 34

Let coefficients of the polynomial$ P (x) = a_dx^d + ... + a_2x^2 + a_0$ where $d \ge 2$, are positive integers. The sequences $(b_n)$ is defined by $b_1 = a_0$ and $b_{n+1} = P (b_n)$ for $n \ge 1$. Prove that for any $n \ge 2$, there exists a prime number $p$ such that $p|b_n$ but it does not divide $b_1, b_2, ..., b_{n-1}$.

2021 Mexico National Olympiad, 5

If $n=\overline{a_1a_2\cdots a_{k-1}a_k}$, be $s(n)$ such that . If $k$ is even, $s(n)=\overline{a_1a_2}+\overline{a_3a_4}\cdots+\overline{a_{k-1}a_k}$ . If $k$ is odd, $s(n)=a_1+\overline{a_2a_3}\cdots+\overline{a_{k-1}a_k}$ For example $s(123)=1+23=24$ and $s(2021)=20+21=41$ Be $n$ is $digital$ if $s(n)$ is a divisor of $n$. Prove that among any 198 consecutive positive integers, all of them less than 2000021 there is one of them that is $digital$.

2018 Switzerland - Final Round, 2

Let $a, b$ and $c$ be natural numbers. Determine the smallest value that the following expression can take: $$\frac{a}{gcd\,\,(a + b, a - c)} + \frac{b}{gcd\,\,(b + c, b - a)} + \frac{c}{gcd\,\,(c + a, c - b)}.$$ . Remark: $gcd \,\, (6, 0) = 6$ and $gcd\,\,(3, -6) = 3$.

2010 Kyrgyzstan National Olympiad, 8

Solve in none-negative integers ${x^3} + 7{x^2} + 35x + 27 = {y^3}$.

2005 Belarusian National Olympiad, 3

Solve in positive integers $a>b$: $$(a-b)^{ab}=a^bb^a$$

2022 Junior Macedonian Mathematical Olympiad, P5

Let $n$ be a positive integer such that $n^5+n^3+2n^2+2n+2$ is a perfect cube. Prove that $2n^2+n+2$ is not a perfect cube. [i]Proposed by Anastasija Trajanova[/i]

2012 Argentina National Olympiad, 4

For each natural number $n$ we denote $a_n$ as the greatest perfect square less than or equal to $n$ and $b_n$ as the least perfect square greater than $n$. For example $a_9=3^2$, $b_9=4^2$ and $a_{20}=4^2$, $b_{20}=5^2$. Calculate: $$\frac{1}{a_1b_1}+\frac{1}{a_2b_2}+\frac{1}{a_3b_3}+\ldots +\frac{1}{a_{600}b_{600}}$$

2009 AIME Problems, 10

Four lighthouses are located at points $ A$, $ B$, $ C$, and $ D$. The lighthouse at $ A$ is $ 5$ kilometers from the lighthouse at $ B$, the lighthouse at $ B$ is $ 12$ kilometers from the lighthouse at $ C$, and the lighthouse at $ A$ is $ 13$ kilometers from the lighthouse at $ C$. To an observer at $ A$, the angle determined by the lights at $ B$ and $ D$ and the angle determined by the lights at $ C$ and $ D$ are equal. To an observer at $ C$, the angle determined by the lights at $ A$ and $ B$ and the angle determined by the lights at $ D$ and $ B$ are equal. The number of kilometers from $ A$ to $ D$ is given by $ \displaystyle\frac{p\sqrt{r}}{q}$, where $ p$, $ q$, and $ r$ are relatively prime positive integers, and $ r$ is not divisible by the square of any prime. Find $ p\plus{}q\plus{}r$,

2020 LIMIT Category 2, 15

How many integer pairs $(x,y)$ satisfies $x^2+y^2=9999(x-y)$?

2019 Hanoi Open Mathematics Competitions, 7

Let $p$ and $q$ be odd prime numbers. Assume that there exists a positive integer $n$ such that $pq-1= n^3$. Express $p+q$ in terms of $n$

2020 Peru Cono Sur TST., P2

Find all functions $f : \mathbb{Z} \to \mathbb{Z}$ that satisfy the conditions: $i) f(f(x)) = xf(x) - x^2 + 2,\forall x\in\mathbb{Z}$ $ii) f$ takes all integer values

2024 Bulgarian Autumn Math Competition, 10.3

Find all polynomials $P$ with integer coefficients, for which there exists a number $N$, such that for every natural number $n \geq N$, all prime divisors of $n+2^{\lfloor \sqrt{n} \rfloor}$ are also divisors of $P(n)$.

TNO 2024 Junior, 6

A box contains 900 cards numbered from 100 to 999. Cards are drawn randomly, one at a time, without replacement, and the sum of their digits is recorded. What is the minimum number of cards that must be drawn to guarantee that at least three of these sums are the same?

2005 International Zhautykov Olympiad, 3

Find all prime numbers $ p,q$ less than 2005 and such that $ q|p^2 \plus{} 4$, $ p|q^2 \plus{} 4$.

2011 Saudi Arabia Pre-TST, 4.2

Find positive integers $a_1 < a_2<... <a_{2010}$ such that $$a_1(1!)^{2010} + a_2(2!)^{2010} + ... + a_{2010}(2010!)^{2010} = (2011 !)^{2010}. $$

2017 NZMOC Camp Selection Problems, 7

Let $a, b, c, d, e$ be distinct positive integers such that $$a^4 + b^4 = c^4 + d^4 = e^5.$$ Show that $ac + bd$ is composite.

2018 Brazil Team Selection Test, 1

Let $n \ge 1$ be an integer. For each subset $S \subset \{1, 2, \ldots , 3n\}$, let $f(S)$ be the sum of the elements of $S$, with $f(\emptyset) = 0$. Determine, as a function of $n$, the sum $$\sum_{\mathclap{\substack{S \subset \{1,2,\ldots,3n\}\\ 3 \mid f(S)}}} f(S)$$ where $S$ runs through all subsets of $\{1, 2,\ldots, 3n\}$ such that $f(S)$ is a multiple of $3$.

2021 Greece Junior Math Olympiad, 3

Determine whether exists positive integer $n$ such that the number $A=8^n+47$ is prime.

2014 Middle European Mathematical Olympiad, 8

Determine all quadruples $(x,y,z,t)$ of positive integers such that \[ 20^x + 14^{2y} = (x + 2y + z)^{zt}.\]

2006 Argentina National Olympiad, 4

Find the greatest number $M$ with the following property: in each rearrangement of the $2006$ integer numbers $1,2,...2006$ there are $1010$ numbers located consecutively in that rearrangement whose sum is greater than or equal to $M$.

1995 Bundeswettbewerb Mathematik, 4

Prove that every integer $k > 1$ has a multiple less than $k^4$ whose decimal expension has at most four distinct digits.

2009 Argentina Team Selection Test, 4

Find all positive integers $ n$ such that $ 20^n \minus{} 13^n \minus{} 7^n$ is divisible by $ 309$.