This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 134

2005 MOP Homework, 1

Let $n$ be a natural number and $f_1$, $f_2$, ..., $f_n$ be polynomials with integers coeffcients. Show that there exists a polynomial $g(x)$ which can be factored (with at least two terms of degree at least $1$) over the integers such that $f_i(x)+g(x)$ cannot be factored (with at least two terms of degree at least $1$) over the integers for every $i$.

2006 JBMO ShortLists, 4

Determine the biggest possible value of $ m$ for which the equation $ 2005x \plus{} 2007y \equal{} m$ has unique solution in natural numbers.

2002 Vietnam Team Selection Test, 2

Find all polynomials $P(x)$ with integer coefficients such that the polynomial \[ Q(x)=(x^2+6x+10) \cdot P^2(x)-1 \] is the square of a polynomial with integer coefficients.

2003 USA Team Selection Test, 4

Let $\mathbb{N}$ denote the set of positive integers. Find all functions $f: \mathbb{N} \to \mathbb{N}$ such that \[ f(m+n)f(m-n) = f(m^2) \] for $m,n \in \mathbb{N}$.

2009 Italy TST, 2

$ABC$ is a triangle in the plane. Find the locus of point $P$ for which $PA,PB,PC$ form a triangle whose area is equal to one third of the area of triangle $ABC$.

1966 IMO Shortlist, 18

Solve the equation $\frac{1}{\sin x}+\frac{1}{\cos x}=\frac 1p$ where $p$ is a real parameter. Discuss for which values of $p$ the equation has at least one real solution and determine the number of solutions in $[0, 2\pi)$ for a given $p.$

2009 Indonesia TST, 2

Find the value of real parameter $ a$ such that $ 2$ is the smallest integer solution of \[ \frac{x\plus{}\log_2 (2^x\minus{}3a)}{1\plus{}\log_2 a} >2.\]

2000 Spain Mathematical Olympiad, 1

Consider the polynomials \[P(x) = x^4 + ax^3 + bx^2 + cx + 1 \quad \text{and} \quad Q(x) = x^4 + cx^3 + bx^2 + ax + 1.\] Find the conditions on the parameters $a, b, $c with $a\neq c$ for which $P(x)$ and $Q(x)$ have two common roots and, in such cases, solve the equations $P(x) = 0$ and $Q(x) = 0.$

MathLinks Contest 7th, 5.3

If $ a\geq b\geq c\geq d > 0$ such that $ abcd\equal{}1$, then prove that \[ \frac 1{1\plus{}a} \plus{} \frac 1{1\plus{}b} \plus{} \frac 1{1\plus{}c} \geq \frac {3}{1\plus{}\sqrt[3]{abc}}.\]