This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6

2013 IFYM, Sozopol, 1

Let point $T$ be on side $AB$ of $\Delta ABC$ be such that $AT-BT=AC-BC$. The perpendicular from point $T$ to $AB$ intersects $AC$ in point $E$ and the angle bisectors of $\angle B$ and $\angle C$ intersect the circumscribed circle $k$ of $ABC$ in points $M$ and $L$. If $P$ is the second intersection point of the line $ME$ with $k$, then prove that $P,T,L$ are collinear.

2021 Turkey Team Selection Test, 3

A point $D$ is taken on the arc $BC$ of the circumcircle of triangle $ABC$ which does not contain $A$. A point $E$ is taken at the intersection of the interior region of the triangles $ABC$ and $ADC$ such that $m(\widehat{ABE})=m(\widehat{BCE})$. Let the circumcircle of the triangle $ADE$ meets the line $AB$ for the second time at $K$. Let $L$ be the intersection of the lines $EK$ and $BC$, $M$ be the intersection of the lines $EC$ and $AD$, $N$ be the intersection of the lines $BM$ and $DL$. Prove that $$m(\widehat{NEL})=m(\widehat{NDE})$$

2024 Vietnam Team Selection Test, 5

Let incircle $(I)$ of triangle $ABC$ touch the sides $BC,CA,AB$ at $D,E,F$ respectively. Let $(O)$ be the circumcircle of $ABC$. Ray $EF$ meets $(O)$ at $M$. Tangents at $M$ and $A$ of $(O)$ meet at $S$. Tangents at $B$ and $C$ of $(O)$ meet at $T$. Line $TI$ meets $OA$ at $J$. Prove that $\angle ASJ=\angle IST$.

2020 Korea National Olympiad, 2

$H$ is the orthocenter of an acute triangle $ABC$, and let $M$ be the midpoint of $BC$. Suppose $(AH)$ meets $AB$ and $AC$ at $D,E$ respectively. $AH$ meets $DE$ at $P$, and the line through $H$ perpendicular to $AH$ meets $DM$ at $Q$. Prove that $P,Q,B$ are collinear.

2017 European Mathematical Cup, 3

Let $ABC$ be a scalene triangle and let its incircle touch sides $BC$, $CA$ and $AB$ at points $D$, $E$ and $F$ respectively. Let line $AD$ intersect this incircle at point $X$. Point $M$ is chosen on the line $FX$ so that the quadrilateral $AFEM$ is cyclic. Let lines $AM$ and $DE$ intersect at point $L$ and let $Q$ be the midpoint of segment $AE$. Point $T$ is given on the line $LQ$ such that the quadrilateral $ALDT$ is cyclic. Let $S$ be a point such that the quadrilateral $TFSA$ is a parallelogram, and let $N$ be the second point of intersection of the circumcircle of triangle $ASX$ and the line $TS$. Prove that the circumcircles of triangles $TAN$ and $LSA$ are tangent to each other.

2009 Costa Rica - Final Round, 6

Let $ \Delta ABC$ with incircle $ \Gamma$, let $ D, E$ and $ F$ the tangency points of $ \Gamma$ with sides $ BC, AC$ and $ AB$, respectively and let $ P$ the intersection point of $ AD$ with $ \Gamma$. $ a)$ Prove that $ BC, EF$ and the straight line tangent to $ \Gamma$ for $ P$ concur at a point $ A'$. $ b)$ Define $ B'$ and $ C'$ in an anologous way than $ A'$. Prove that $ A'\minus{}B'\minus{}C'$