This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 175

2010 ELMO Shortlist, 1

For a permutation $\pi$ of $\{1,2,3,\ldots,n\}$, let $\text{Inv}(\pi)$ be the number of pairs $(i,j)$ with $1 \leq i < j \leq n$ and $\pi(i) > \pi(j)$. [list=1] [*] Given $n$, what is $\sum \text{Inv}(\pi)$ where the sum ranges over all permutations $\pi$ of $\{1,2,3,\ldots,n\}$? [*] Given $n$, what is $\sum \left(\text{Inv}(\pi)\right)^2$ where the sum ranges over all permutations $\pi$ of $\{1,2,3,\ldots,n\}$?[/list] [i]Brian Hamrick.[/i]

2009 Belarus Team Selection Test, 3

Let $n \in \mathbb N$ and $A_n$ set of all permutations $(a_1, \ldots, a_n)$ of the set $\{1, 2, \ldots , n\}$ for which \[k|2(a_1 + \cdots+ a_k), \text{ for all } 1 \leq k \leq n.\] Find the number of elements of the set $A_n$. [i]Proposed by Vidan Govedarica, Serbia[/i]

2017 Pan-African Shortlist, I4

Find the maximum and minimum of the expression \[ \max(a_1, a_2) + \max(a_2, a_3), + \dots + \max(a_{n-1}, a_n) + \max(a_n, a_1), \] where $(a_1, a_2, \dots, a_n)$ runs over the set of permutations of $(1, 2, \dots, n)$.

2024 Miklos Schweitzer, 4

Let $\pi$ be a given permutation of the set $\{1, 2, \dots, n\}$. Determine the smallest possible value of \[ \sum_{i=1}^n |\pi(i) - \sigma(i)|, \] where $\sigma$ is a permutation chosen from the set of all $n$-cycles. Express the result in terms of the number and lengths of the cycles in the disjoint cycle decomposition of $\pi$, including the fixed points.

2020 EGMO, 4

A permutation of the integers $1, 2, \ldots, m$ is called [i]fresh[/i] if there exists no positive integer $k < m$ such that the first $k$ numbers in the permutation are $1, 2, \ldots, k$ in some order. Let $f_m$ be the number of fresh permutations of the integers $1, 2, \ldots, m$. Prove that $f_n \ge n \cdot f_{n - 1}$ for all $n \ge 3$. [i]For example, if $m = 4$, then the permutation $(3, 1, 4, 2)$ is fresh, whereas the permutation $(2, 3, 1, 4)$ is not.[/i]

2020 Regional Olympiad of Mexico Northeast, 3

A permutation of the integers \(2020, 2021,...,2118, 2119\) is a list \(a_1,a_2,a_3,...,a_{100}\) where each one of the numbers appears exactly once. For each permutation we define the partial sums. $s_1=a_1$ $s_2=a_1+a_2$ $s_3=a_1+a_2+a_3$ $...$ $s_{100}=a_1+a_2+...+a_{100}$ How many of these permutations satisfy that none of the numbers \(s_1,...,s_{100}\) is divisible by $3$?

2013 India IMO Training Camp, 1

Let $n \ge 2$ be an integer. There are $n$ beads numbered $1, 2, \ldots, n$. Two necklaces made out of some of these beads are considered the same if we can get one by rotating the other (with no flipping allowed). For example, with $n \ge 5$, the necklace with four beads $1, 5, 3, 2$ in the clockwise order is same as the one with $5, 3, 2, 1$ in the clockwise order, but is different from the one with $1, 2, 3, 5$ in the clockwise order. We denote by $D_0(n)$ (respectively $D_1(n)$) the number of ways in which we can use all the beads to make an even number (resp. an odd number) of necklaces each of length at least $3$. Prove that $n - 1$ divides $D_1(n) - D_0(n)$.

2016 Saudi Arabia GMO TST, 3

Find all positive integer $n$ such that there exists a permutation $(a_1, a_2,...,a_n)$ of $(1, 2,3,..., n)$ satisfying the condition: $a_1 + a_2 +... + a_k$ is divisible by $k$ for each $k = 1, 2,3,..., n$.

1984 IMO Shortlist, 17

In a permutation $(x_1, x_2, \dots , x_n)$ of the set $1, 2, \dots , n$ we call a pair $(x_i, x_j )$ discordant if $i < j$ and $x_i > x_j$. Let $d(n, k)$ be the number of such permutations with exactly $k$ discordant pairs. Find $d(n, 2)$ and $d(n, 3).$

2019 Brazil Undergrad MO, 6

In a hidden friend, suppose no one takes oneself. We say that the hidden friend has "marmalade" if there are two people $A$ and $ B$ such that A took $B$ and $ B $ took $A$. For each positive integer n, let $f (n)$ be the number of hidden friends with n people where there is no “marmalade”, i.e. $f (n)$ is equal to the number of permutations $\sigma$ of {$1, 2,. . . , n$} such that: *$\sigma (i) \neq i$ for all $i=1,2,...,n$ * there are no $ 1 \leq i <j \leq n $ such that $ \sigma (i) = j$ and $\sigma (j) = i. $ Determine the limit $\lim_{n \to + \infty} \frac{f(n)}{n!}$

2015 Middle European Mathematical Olympiad, 3

There are $n$ students standing in line positions $1$ to $n$. While the teacher looks away, some students change their positions. When the teacher looks back, they are standing in line again. If a student who was initially in position $i$ is now in position $j$, we say the student moved for $|i-j|$ steps. Determine the maximal sum of steps of all students that they can achieve.

2016 IMC, 5

Let $S_n$ denote the set of permutations of the sequence $(1,2,\dots, n)$. For every permutation $\pi=(\pi_1, \dots, \pi_n)\in S_n$, let $\mathrm{inv}(\pi)$ be the number of pairs $1\le i < j \le n$ with $\pi_i>\pi_j$; i. e. the number of inversions in $\pi$. Denote by $f(n)$ the number of permutations $\pi\in S_n$ for which $\mathrm{inv}(\pi)$ is divisible by $n+1$. Prove that there exist infinitely many primes $p$ such that $f(p-1)>\frac{(p-1)!}{p}$, and infinitely many primes $p$ such that $f(p-1)<\frac{(p-1)!}{p}$. (Proposed by Fedor Petrov, St. Petersburg State University)

1988 IMO Longlists, 6

An $ n \times n, n \geq 2$ chessboard is numbered by the numbers $ 1, 2, \ldots, n^2$ (and every number occurs). Prove that there exist two neighbouring (with common edge) squares such that their numbers differ by at least $ n.$

2012 BAMO, 3

Let $x_1,x_2,...,x_k$ be a sequence of integers. A rearrangement of this sequence (the numbers in the sequence listed in some other order) is called a [b]scramble[/b] if no number in the new sequence is equal to the number originally in its location. For example, if the original sequence is $1,3,3,5$ then $3,5,1,3$ is a scramble, but $3,3,1,5$ is not. A rearrangement is called a [b]two-two[/b] if exactly two of the numbers in the new sequence are each exactly two more than the numbers that originally occupied those locations. For example, $3,5,1,3$ is a two-two of the sequence $1,3,3,5$ (the first two values $3$ and $5$ of the new sequence are exactly two more than their original values $1$ and $3$). Let $n\geq 2$. Prove that the number of scrambles of $1,1,2,3,...,n-1,n$ is equal to the number of two-twos of $1,2,3,...,n,n+1$. (Notice that both sequences have $n+1$ numbers, but the first one contains two 1s.)

2024 Belarus Team Selection Test, 1.4

Two permutations of $1,\ldots, n$ are written on the board: $a_1,\ldots,a_n$ $b_1,\ldots,b_n$ A move consists of one of the following two operations: 1) Change the first row to $b_{a_1},\ldots,b_{a_n}$ 2) Change the second row to $a_{b_1},\ldots,a_{b_n}$ The starting position is: $2134\ldots n$ $234\ldots n1$ Is it possible by finitely many moves to get: $2314\ldots n$ $234 \ldots n1$? [i]D. Zmiaikou[/i]

1988 Tournament Of Towns, (190) 3

Let $a_1 , a_2 ,... , a_n$ be an arrangement of the integers $1,2,..., n$. Let $$S=\frac{a_1}{1}+\frac{a_2}{2}+\frac{a_3}{3}+...+\frac{a_n}{1}.$$ Find a natural number $n$ such that among the values of $S$ for all arrangements $a_1 , a_2 ,... , a_n$ , all the integers from $n$ to $n + 100$ appear .

2005 IMO Shortlist, 7

Suppose that $ a_1$, $ a_2$, $ \ldots$, $ a_n$ are integers such that $ n\mid a_1 \plus{} a_2 \plus{} \ldots \plus{} a_n$. Prove that there exist two permutations $ \left(b_1,b_2,\ldots,b_n\right)$ and $ \left(c_1,c_2,\ldots,c_n\right)$ of $ \left(1,2,\ldots,n\right)$ such that for each integer $ i$ with $ 1\leq i\leq n$, we have \[ n\mid a_i \minus{} b_i \minus{} c_i \] [i]Proposed by Ricky Liu & Zuming Feng, USA[/i]

2017 239 Open Mathematical Olympiad, 1

Denote every permutation of $1,2,\dots, n$ as $\sigma =(a_1,a_2,\dots,n)$. Prove that the sum $$\sum \frac{1}{(a_1)(a_1+a_2)(a_1+a_2+a_3)\dots(a_1+a_2+\dots+a_n)}$$ taken over all possible permutations $\sigma$ equals $\frac{1}{n!}$.

2010 USAJMO, 1

A [i]permutation[/i] of the set of positive integers $[n] = \{1, 2, . . . , n\}$ is a sequence $(a_1 , a_2 , \ldots, a_n ) $ such that each element of $[n]$ appears precisely one time as a term of the sequence. For example, $(3, 5, 1, 2, 4)$ is a permutation of $[5]$. Let $P (n)$ be the number of permutations of $[n]$ for which $ka_k$ is a perfect square for all $1 \leq k \leq n$. Find with proof the smallest $n$ such that $P (n)$ is a multiple of $2010$.

2023 IMC, 5

Fix positive integers $n$ and $k$ such that $2 \le k \le n$ and a set $M$ consisting of $n$ fruits. A [i]permutation[/i] is a sequence $x=(x_1,x_2,\ldots,x_n)$ such that $\{x_1,\ldots,x_n\}=M$. Ivan [i]prefers[/i] some (at least one) of these permutations. He realized that for every preferred permutation $x$, there exist $k$ indices $i_1 < i_2 < \ldots < i_k$ with the following property: for every $1 \le j < k$, if he swaps $x_{i_j}$ and $x_{i_{j+1}}$, he obtains another preferred permutation. \\ Prove that he prefers at least $k!$ permutations.

1966 IMO Longlists, 51

Consider $n$ students with numbers $1, 2, \ldots, n$ standing in the order $1, 2, \ldots, n.$ Upon a command, any of the students either remains on his place or switches his place with another student. (Actually, if student $A$ switches his place with student $B,$ then $B$ cannot switch his place with any other student $C$ any more until the next command comes.) Is it possible to arrange the students in the order $n,1, 2, \ldots, n-1$ after two commands ?

2021 Kyiv City MO Round 1, 10.2

The $1 \times 1$ cells located around the perimeter of a $4 \times 4$ square are filled with the numbers $1, 2, \ldots, 12$ so that the sums along each of the four sides are equal. In the upper left corner cell is the number $1$, in the upper right - the number $5$, and in the lower right - the number $11$. [img]https://i.ibb.co/PM0ry1D/Kyiv-City-MO-2021-Round-1-10-2.png[/img] Under these conditions, what number can be located in the last corner cell? [i]Proposed by Mariia Rozhkova[/i]

2010 Contests, 1

A [i]permutation[/i] of the set of positive integers $[n] = \{1, 2, . . . , n\}$ is a sequence $(a_1 , a_2 , \ldots, a_n ) $ such that each element of $[n]$ appears precisely one time as a term of the sequence. For example, $(3, 5, 1, 2, 4)$ is a permutation of $[5]$. Let $P (n)$ be the number of permutations of $[n]$ for which $ka_k$ is a perfect square for all $1 \leq k \leq n$. Find with proof the smallest $n$ such that $P (n)$ is a multiple of $2010$.

2021 Poland - Second Round, 6

Let $p\ge 5$ be a prime number. Consider the function given by the formula $$f (x_1,..., x_p) = x_1 + 2x_2 +... + px_p.$$ Let $A_k$ denote the set of all these permutations $(a_1,..., a_p)$ of the set $\{1,..., p\}$, for integer number $f (a_1,..., a_p) - k$ is divisible by $p$ and $a_i \ne i$ for all $i \in \{1,..., p\}$. Prove that the sets $A_1$ and $A_4$ have the same number of elements.

2017 Kürschák Competition, 3

An $n$ by $n$ table has an integer in each cell, such that no two cells within a row share the same number. Prove that it is possible to permute the elements within each row to obtain a table that has $n$ distinct numbers in each column.