Found problems: 396
PEN A Problems, 63
There is a large pile of cards. On each card one of the numbers $1$, $2$, $\cdots$, $n$ is written. It is known that the sum of all numbers of all the cards is equal to $k \cdot n!$ for some integer $k$. Prove that it is possible to arrange cards into $k$ stacks so that the sum of numbers written on the cards in each stack is equal to $n!$.
2012 China Team Selection Test, 2
Prove that there exists a positive real number $C$ with the following property: for any integer $n\ge 2$ and any subset $X$ of the set $\{1,2,\ldots,n\}$ such that $|X|\ge 2$, there exist $x,y,z,w \in X$(not necessarily distinct) such that
\[0<|xy-zw|<C\alpha ^{-4}\]
where $\alpha =\frac{|X|}{n}$.
2013 ELMO Problems, 1
Let $a_1,a_2,...,a_9$ be nine real numbers, not necessarily distinct, with average $m$. Let $A$ denote the number of triples $1 \le i < j < k \le 9$ for which $a_i + a_j + a_k \ge 3m$. What is the minimum possible value of $A$?
[i]Proposed by Ray Li[/i]
2014 Vietnam National Olympiad, 2
Given the polynomial $P(x)=(x^2-7x+6)^{2n}+13$ where $n$ is a positive integer. Prove that $P(x)$ can't be written as a product of $n+1$ non-constant polynomials with integer coefficients.
2010 Polish MO Finals, 1
The integer number $n > 1$ is given and a set $S \subset \{0, 1, 2, \ldots, n-1\}$ with $|S| > \frac{3}{4} n$. Prove that there exist integer numbers $a, b, c$ such that the remainders after the division by $n$ of the numbers:
\[a, b, c, a+b, b+c, c+a, a+b+c\]
belong to $S$.
2008 APMO, 2
Students in a class form groups each of which contains exactly three members such that any two distinct groups have at most one member in common. Prove that, when the class size is $ 46$, there is a set of $ 10$ students in which no group is properly contained.
2008 Bulgaria National Olympiad, 3
Let $n\in\mathbb{N}$ and $0\leq a_1\leq a_2\leq\ldots\leq a_n\leq\pi$ and $b_1,b_2,\ldots ,b_n$ are real numbers for which the following inequality is satisfied :
\[\left|\sum_{i\equal{}1}^{n} b_i\cos(ka_i)\right|<\frac{1}{k}\]
for all $ k\in\mathbb{N}$. Prove that $ b_1\equal{}b_2\equal{}\ldots \equal{}b_n\equal{}0$.
2001 USAMO, 1
Each of eight boxes contains six balls. Each ball has been colored with one of $n$ colors, such that no two balls in the same box are the same color, and no two colors occur together in more than one box. Determine, with justification, the smallest integer $n$ for which this is possible.
2011 AMC 10, 11
There are $52$ people in a room. What is the largest value of $n$ such that the statement "At least $n$ people in this room have birthdays falling in the same month" is always true?
$ \textbf{(A)}\ 2 \qquad
\textbf{(B)}\ 3 \qquad
\textbf{(C)}\ 4 \qquad
\textbf{(D)}\ 5 \qquad
\textbf{(E)}\ 12 $
2014 Contests, 2
Given the polynomial $P(x)=(x^2-7x+6)^{2n}+13$ where $n$ is a positive integer. Prove that $P(x)$ can't be written as a product of $n+1$ non-constant polynomials with integer coefficients.
1990 IMO Longlists, 65
Prove that every integer $ k$ greater than 1 has a multiple that is less than $ k^4$ and can be written in the decimal system with at most four different digits.
2012 Indonesia TST, 4
Determine all natural numbers $n$ such that for each natural number $a$ relatively prime with $n$ and $a \le 1 + \left\lfloor \sqrt{n} \right\rfloor$ there exists some integer $x$ with $a \equiv x^2 \mod n$.
Remark: "Natural numbers" is the set of positive integers.
2006 China Team Selection Test, 3
$k$ and $n$ are positive integers that are greater than $1$. $N$ is the set of positive integers. $A_1, A_2, \cdots A_k$ are pairwise not-intersecting subsets of $N$ and $A_1 \cup A_2 \cup \cdots \cup A_k = N$.
Prove that for some $i \in \{ 1,2,\cdots,k \}$, there exsits infinity many non-factorable n-th degree polynomials so that coefficients of one polynomial are pairwise distinct and all the coeficients are in $A_i$.
2002 Manhattan Mathematical Olympiad, 2
Let us consider the sequence $1,2, 3, \ldots , 2002$. Somebody choses $1002$ numbers from the sequence. Prove that there are two of the chosen numbers which are relatively prime (i.e. do not have any common divisors except $1$).
2015 Czech and Slovak Olympiad III A, 6
Integer $n>2$ is given. Find the biggest integer $d$, for which holds, that from any set $S$ consisting of $n$ integers, we can find three different (but not necesarilly disjoint) nonempty subsets, such that sum of elements of each of them is divisible by $d$.
2010 Contests, A1
Given a positive integer $n,$ what is the largest $k$ such that the numbers $1,2,\dots,n$ can be put into $k$ boxes so that the sum of the numbers in each box is the same?
[When $n=8,$ the example $\{1,2,3,6\},\{4,8\},\{5,7\}$ shows that the largest $k$ is [i]at least[/i] 3.]
2009 Polish MO Finals, 2
Let $ S$ be a set of all points of a plane whose coordinates are integers. Find the smallest positive integer $ k$ for which there exists a 60-element subset of set $ S$ with the following condition satisfied for any two elements $ A,B$ of the subset there exists a point $ C$ contained in $ S$ such that the area of triangle $ ABC$ is equal to k .
2010 Putnam, B3
There are 2010 boxes labeled $B_1,B_2,\dots,B_{2010},$ and $2010n$ balls have been distributed among them, for some positive integer $n.$ You may redistribute the balls by a sequence of moves, each of which consists of choosing an $i$ and moving [i]exactly[/i] $i$ balls from box $B_i$ into any one other box. For which values of $n$ is it possible to reach the distribution with exactly $n$ balls in each box, regardless of the initial distribution of balls?
2000 Korea - Final Round, 1
Prove that for any prime $p$, there exist integers $x,y,z,$ and $w$ such that $x^2+y^2+z^2-wp=0$ and $0<w<p$
1978 IMO Longlists, 1
The set $M = \{1, 2, . . . , 2n\}$ is partitioned into $k$ nonintersecting subsets $M_1,M_2, \dots, M_k,$ where $n \ge k^3 + k.$ Prove that there exist even numbers $2j_1, 2j_2, \dots, 2j_{k+1}$ in $M$ that are in one and the same subset $M_i$ $(1 \le i \le k)$ such that the numbers $2j_1 - 1, 2j_2 - 1, \dots, 2j_{k+1} - 1$ are also in one and the same subset $M_j (1 \le j \le k).$
2020 IMO, 4
There is an integer $n > 1$. There are $n^2$ stations on a slope of a mountain, all at different altitudes. Each of two cable car companies, $A$ and $B$, operates $k$ cable cars; each cable car provides a transfer from one of the stations to a higher one (with no intermediate stops). The $k$ cable cars of $A$ have $k$ different starting points and $k$ different finishing points, and a cable car which starts higher also finishes higher. The same conditions hold for $B$. We say that two stations are linked by a company if one can start from the lower station and reach the higher one by using one or more cars of that company (no other movements between stations are allowed). Determine the smallest positive integer $k$ for which one can guarantee that there are two stations that are linked by both companies.
[i]Proposed by Tejaswi Navilarekallu, India[/i]
2012 ELMO Shortlist, 6
Consider a directed graph $G$ with $n$ vertices, where $1$-cycles and $2$-cycles are permitted. For any set $S$ of vertices, let $N^{+}(S)$ denote the out-neighborhood of $S$ (i.e. set of successors of $S$), and define $(N^{+})^k(S)=N^{+}((N^{+})^{k-1}(S))$ for $k\ge2$.
For fixed $n$, let $f(n)$ denote the maximum possible number of distinct sets of vertices in $\{(N^{+})^k(X)\}_{k=1}^{\infty}$, where $X$ is some subset of $V(G)$. Show that there exists $n>2012$ such that $f(n)<1.0001^n$.
[i]Linus Hamilton.[/i]
2013 Gulf Math Olympiad, 1
Let $a_1,a_2,\ldots,a_{2n}$ be positive real numbers such that $a_ja_{n+j}=1$ for the values $j=1,2,\ldots,n$.
[list]
a. Prove that either the average of the numbers $a_1,a_2,\ldots,a_n$ is at least 1 or the average of
the numbers $a_{n+1},a_{n+2},\ldots,a_{2n}$ is at least 1.
b. Assuming that $n\ge2$, prove that there exist two distinct numbers $j,k$ in the set $\{1,2,\ldots,2n\}$ such that
\[|a_j-a_k|<\frac{1}{n-1}.\]
[/list]
2010 Postal Coaching, 1
Let $A, B, C, D$ be four distinct points in the plane such that the length of the six line segments $AB, AC, AD, BC, BD, CD$ form a $2$-element set ${a, b}$. If $a > b$, determine all the possible values of $\frac ab$.
2000 Mediterranean Mathematics Olympiad, 1
Let $F=\{1,2,...,100\}$ and let $G$ be any $10$-element subset of $F$. Prove that there exist two disjoint nonempty subsets $S$ and $T$ of $G$ with the same sum of elements.