Found problems: 200
1967 IMO Shortlist, 3
Which regular polygon can be obtained (and how) by cutting a cube with a plane ?
1986 IMO Shortlist, 16
Let $A,B$ be adjacent vertices of a regular $n$-gon ($n\ge5$) with center $O$. A triangle $XYZ$, which is congruent to and initially coincides with $OAB$, moves in the plane in such a way that $Y$ and $Z$ each trace out the whole boundary of the polygon, with $X$ remaining inside the polygon. Find the locus of $X$.
1995 Romania Team Selection Test, 1
How many colorings of an $n$-gon in $p \ge 2$ colors are there such that no two neighboring vertices have the same color?
2012 Oral Moscow Geometry Olympiad, 2
Two equal polygons $F$ and $F'$ are given on the plane. It is known that the vertices of the polygon $F$ belong to $F'$ (may lie inside it or on the border). Is it true that all the vertices of these polygons coincide?
2003 Bosnia and Herzegovina Team Selection Test, 5
It is given regular polygon with $2n$ sides and center $S$. Consider every quadrilateral with vertices as vertices of polygon. Let $u$ be number of such quadrilaterals which contain point $S$ inside and $v$ number of remaining quadrilaterals. Find $u-v$
2016 Peru Cono Sur TST, P2
Let $\omega$ be a circle. For each $n$, let $A_n$ be the area of a regular $n$-sided polygon circumscribed to $\omega$ and $B_n$ the area of a regular $n$-sided polygon inscribed in $\omega$ . Try that $3A_{2015} + B_{2015}> 4A_{4030}$
1969 IMO Shortlist, 46
$(NET 1)$ The vertices of an $(n + 1)-$gon are placed on the edges of a regular $n-$gon so that the perimeter of the $n-$gon is divided into equal parts. How does one choose these $n + 1$ points in order to obtain the $(n + 1)-$gon with
$(a)$ maximal area;
$(b)$ minimal area?
2008 Tournament Of Towns, 4
No matter how two copies of a convex polygon are placed inside a square, they always have a common point. Prove that no matter how three copies of the same polygon are placed inside this square, they also have a common point.
2018 BAMO, 5
To [i]dissect [/i] a polygon means to divide it into several regions by cutting along finitely many line segments. For example, the diagram below shows a dissection of a hexagon into two triangles and two quadrilaterals:
[img]https://cdn.artofproblemsolving.com/attachments/0/a/378e477bcbcec26fc90412c3eada855ae52b45.png[/img]
An [i]integer-ratio[/i] right triangle is a right triangle whose side lengths are in an integer ratio. For example, a triangle with sides $3,4,5$ is an[i] integer-ratio[/i] right triangle, and so is a triangle with sides $\frac52 \sqrt3 ,6\sqrt3, \frac{13}{2} \sqrt3$. On the other hand, the right triangle with sides$ \sqrt2 ,\sqrt5, \sqrt7$ is not an [i]integer-ratio[/i] right triangle. Determine, with proof, all integers $n$ for which it is possible to completely [i]dissect [/i] a regular $n$-sided polygon into [i]integer-ratio[/i] right triangles.
2006 Sharygin Geometry Olympiad, 8.2
What $n$ is the smallest such that “there is a $n$-gon that can be cut into a triangle, a quadrilateral, ..., a $2006$-gon''?
2016 Sharygin Geometry Olympiad, 4
Is it possible to dissect a regular decagon along some of its diagonals so that the resulting parts can form two regular polygons?
by N.Beluhov
2016 Ecuador NMO (OMEC), 2
All diagonals are plotted in a $2017$-sided convex polygon. A line $\ell$ intersects said polygon but does not pass through any of its vertices. Show that the line $\ell$ intersects an even number of diagonals of said polygon.
2005 Sharygin Geometry Olympiad, 2
Cut a cross made up of five identical squares into three polygons, equal in area and perimeter.
1986 IMO Longlists, 33
Let $A,B$ be adjacent vertices of a regular $n$-gon ($n\ge5$) with center $O$. A triangle $XYZ$, which is congruent to and initially coincides with $OAB$, moves in the plane in such a way that $Y$ and $Z$ each trace out the whole boundary of the polygon, with $X$ remaining inside the polygon. Find the locus of $X$.
2018-IMOC, G1
Given an integer $n \ge 3$. Find the largest positive integer $k $ with the following property:
For $n$ points in general position, there exists $k$ ways to draw a non-intersecting polygon with those $n$ points as it’s vertices.
[hide=Different wording]Given $n$, find the maximum $k$ so that for every general position of $n$ points , there are at least $k$ ways of connecting the points to form a polygon.[/hide]
2023 Romania Team Selection Test, P2
A [i]diagonal line[/i] of a (not necessarily convex) polygon with at least four sides is any line through two non-adjacent vertices of that polygon. Determine all polygons with at least four sides satisfying the following condition: The reflexion of each vertex in each diagonal line lies inside or on the boundary of the polygon.
[i]The Problem Selection Committee[/i]
2009 Dutch IMO TST, 5
Suppose that we are given an $n$-gon of which all sides have the same length, and of which all the vertices have rational coordinates. Prove that $n$ is even.
2018 Bosnia and Herzegovina Team Selection Test, 3
Find all values of positive integers $a$ and $b$ such that it is possible to put $a$ ones and $b$ zeros in every of vertices in polygon with $a+b$ sides so it is possible to rotate numbers in those vertices with respect to primary position and after rotation one neighboring $0$ and $1$ switch places and in every other vertices other than those two numbers remain the same.
2024 Middle European Mathematical Olympiad, 2
There is a rectangular sheet of paper on an infinite blackboard. Marvin secretly chooses a convex $2024$-gon $P$ that lies fully on the piece of paper. Tigerin wants to find the vertices of $P$. In each step, Tigerin can draw a line $g$ on the blackboard that is fully outside the piece of paper, then Marvin replies with the line $h$ parallel to $g$ that is the closest to $g$ which passes through at least one vertex of $P$. Prove that there exists a positive integer $n$, independent of the choice of the polygon, such that Tigerin can always determine the vertices of $P$ in at most $n$ steps.
2023 Novosibirsk Oral Olympiad in Geometry, 5
A circle of length $10$ is inscribed in a convex polygon with perimeter $15$. What part of the area of this polygon is occupied by the resulting circle?
2006 Germany Team Selection Test, 3
Suppose we have a $n$-gon. Some $n-3$ diagonals are coloured black and some other $n-3$ diagonals are coloured red (a side is not a diagonal), so that no two diagonals of the same colour can intersect strictly inside the polygon, although they can share a vertex. Find the maximum number of intersection points between diagonals coloured differently strictly inside the polygon, in terms of $n$.
[i]Proposed by Alexander Ivanov, Bulgaria[/i]
1989 Austrian-Polish Competition, 4
Let $P$ be a convex polygon in the plane. Show that there exists a circle containing the entire polygon $P$ and having at least three adjacent vertices of $P$ on its boundary.
1949 Moscow Mathematical Olympiad, 157
a) Prove that if a planar polygon has several axes of symmetry, then all of them intersect at one point.
b) A finite solid body is symmetric about two distinct axes. Describe the position of the symmetry planes of the body.
1989 Bundeswettbewerb Mathematik, 3
A convex polygon is divided into finitely many quadrilaterals. Prove that at least one of these quadrilaterals must also be convex.
2009 Kyiv Mathematical Festival, 3
Let $AB$ be a segment of a plane. Is it possible to paint the plane in $2009$ colors in such a way that both of the following conditions are satisfied?
1) Every two points of the same color can be connected by a polygonal line.
2) For any point $C$ of $AB$, every $n \in N$ and every $k\in \{1,2,3,...,2009\}$ , there exists a point $D$, painted in $k$-th color such that the length of $CD$ is less than $0,0...01$, where all the zeros after the decimal point are exactly $n$.