This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3597

2008 Iran MO (3rd Round), 5

Prove that the following polynomial is irreducible in $ \mathbb Z[x,y]$: \[ x^{200}y^5\plus{}x^{51}y^{100}\plus{}x^{106}\minus{}4x^{100}y^5\plus{}x^{100}\minus{}2y^{100}\minus{}2x^6\plus{}4y^5\minus{}2\]

2008 IMC, 3

Let $p$ be a polynomial with integer coefficients and let $a_1<a_2<\cdots <a_k$ be integers. Given that $p(a_i)\ne 0\forall\; i=1,2,\cdots, k$. [list] (a) Prove $\exists\; a\in \mathbb{Z}$ such that \[ p(a_i)\mid p(a)\;\;\forall i=1,2,\dots ,k \] (b) Does there exist $a\in \mathbb{Z}$ such that \[ \prod_{i=1}^{k}p(a_i)\mid p(a) \][/list]

2016 Ukraine Team Selection Test, 10

Let $a_1,\ldots, a_n$ be real numbers. Define polynomials $f,g$ by $$f(x)=\sum_{k=1}^n a_kx^k,\ g(x)=\sum_{k=1}^n \frac{a_k}{2^k-1}x^k.$$ Assume that $g(2016)=0$. Prove that $f(x)$ has a root in $(0;2016)$.

2006 Princeton University Math Competition, 6

Suppose that $P(x)$ is a polynomial with the property that there exists another polynomial $Q(x)$ to satisfy $P(x)Q(x)=P(x^2)$. $P(x)$ and $Q(x)$ may have complex coefficients. If $P(x)$ is a quintic with distinct complex roots $r_1,\dots,r_5$, find all possible values of $|r_1|+\dots+|r_5|$.

1998 Italy TST, 4

Find all polynomials $P(x) = x^n +a_1x^{n-1} +...+a_n$ whose zeros (with their multiplicities) are exactly $a_1,a_2,...,a_n$.

2005 MOP Homework, 7

Let $n$ be a natural number and $f_1$, $f_2$, ..., $f_n$ be polynomials with integers coeffcients. Show that there exists a polynomial $g(x)$ which can be factored (with at least two terms of degree at least $1$) over the integers such that $f_i(x)+g(x)$ cannot be factored (with at least two terms of degree at least $1$ over the integers for every $i$.

2009 China Team Selection Test, 2

Find all integers $ n\ge 2$ having the following property: for any $ k$ integers $ a_{1},a_{2},\cdots,a_{k}$ which aren't congruent to each other (modulo $ n$), there exists an integer polynomial $ f(x)$ such that congruence equation $ f(x)\equiv 0 (mod n)$ exactly has $ k$ roots $ x\equiv a_{1},a_{2},\cdots,a_{k} (mod n).$

1967 IMO Longlists, 44

Suppose that $p$ and $q$ are two different positive integers and $x$ is a real number. Form the product $(x+p)(x+q).$ Find the sum $S(x,n) = \sum (x+p)(x+q),$ where $p$ and $q$ take values from 1 to $n.$ Does there exist integer values of $x$ for which $S(x,n) = 0.$

2025 Ukraine National Mathematical Olympiad, 11.5

Initially, two constant polynomials are written on the board: \(0\) and \(1\). At each step, it is allowed to add \(1\) to one of the polynomials and to multiply another one by the polynomial \(45x + 2025\). Can the polynomials become equal at some point? [i]Proposed by Oleksii Masalitin[/i]

2008 All-Russian Olympiad, 1

Numbers $ a,b,c$ are such that the equation $ x^3 \plus{} ax^2 \plus{} bx \plus{} c$ has three real roots.Prove that if $ \minus{} 2\leq a \plus{} b \plus{} c\leq 0$,then at least one of these roots belongs to the segment $ [0,2]$

2003 Polish MO Finals, 3

Find all polynomials $W$ with integer coefficients satisfying the following condition: For every natural number $n, 2^n - 1$ is divisible by $W(n).$

2010 Canada National Olympiad, 5

Let $P(x)$ and $Q(x)$ be polynomials with integer coefficients. Let $a_n = n! +n$. Show that if $\frac{P(a_n)}{Q(a_n)}$ is an integer for every $n$, then $\frac{P(n)}{Q(n)}$ is an integer for every integer $n$ such that $Q(n)\neq 0$.

2014 AIME Problems, 14

Let $m$ be the largest real solution to the equation \[\frac{3}{x-3}+\frac{5}{x-5}+\frac{17}{x-17}+\frac{19}{x-19}= x^2-11x-4.\] There are positive integers $a,b,c$ such that $m = a + \sqrt{b+\sqrt{c}}$. Find $a+b+c$.

2022 Canadian Mathematical Olympiad Qualification, 4

For a non-negative integer $n$, call a one-variable polynomial $F$ with integer coefficients $n$-[i]good [/i] if: (a) $F(0) = 1$ (b) For every positive integer $c$, $F(c) > 0$, and (c) There exist exactly $n$ values of $c$ such that $F(c)$ is prime. Show that there exist infinitely many non-constant polynomials that are not $n$-good for any $n$.

1947 Moscow Mathematical Olympiad, 125

Find the coefficients of $x^{17}$ and $x^{18}$ after expansion and collecting the terms of $(1+x^5+x^7)^{20}$.

2024 Romanian Master of Mathematics, 6

A polynomial $P$ with integer coefficients is [i]square-free[/i] if it is not expressible in the form $P = Q^2R$, where $Q$ and $R$ are polynomials with integer coefficients and $Q$ is not constant. For a positive integer $n$, let $P_n$ be the set of polynomials of the form $$1 + a_1x + a_2x^2 + \cdots + a_nx^n$$ with $a_1,a_2,\ldots, a_n \in \{0,1\}$. Prove that there exists an integer $N$ such that for all integers $n \geq N$, more than $99\%$ of the polynomials in $P_n$ are square-free. [i]Navid Safaei, Iran[/i]

1990 AMC 12/AHSME, 30

If $R_n=\frac{1}{2}(a^n+b^n)$ where $a=3+2\sqrt{2}$, $b=3-2\sqrt{2}$, and $n=0,1,2, ...,$ then $R_{12345}$ is an integer. Its units digit is $ \textbf{(A)}\ 1 \qquad\textbf{(B)}\ 3 \qquad\textbf{(C)}\ 5 \qquad\textbf{(D)}\ 7 \qquad\textbf{(E)}\ 9 $

2017 Iran MO (3rd round), 2

For prime number $q$ the polynomial $P(x)$ with integer coefficients is said to be factorable if there exist non-constant polynomials $f_q,g_q$ with integer coefficients such that all of the coefficients of the polynomial $Q(x)=P(x)-f_q(x)g_q(x)$ are dividable by $q$ ; and we write: $$P(x)\equiv f_q(x)g_q(x)\pmod{q}$$ For example the polynomials $2x^3+2,x^2+1,x^3+1$ can be factored modulo $2,3,p$ in the following way: $$\left\{\begin{array}{lll} X^2+1\equiv (x+1)(-x+1)\pmod{2}\\ 2x^3+2\equiv (2x-1)^3\pmod{3}\\ X^3+1\equiv (x+1)(x^2-x+1) \end{array}\right.$$ Also the polynomial $x^2-2$ is not factorable modulo $p=8k\pm 3$. a) Find all prime numbers $p$ such that the polynomial $P(x)$ is factorable modulo $p$: $$P(x)=x^4-2x^3+3x^2-2x-5$$ b) Does there exist irreducible polynomial $P(x)$ in $\mathbb{Z}[x]$ with integer coefficients such that for each prime number $p$ , it is factorable modulo $p$?

2017 ISI Entrance Examination, 8

Let $k,n$ and $r$ be positive integers. (a) Let $Q(x)=x^k+a_1x^{k+1}+\cdots+a_nx^{k+n}$ be a polynomial with real coefficients. Show that the function $\frac{Q(x)}{x^k}$ is strictly positive for all real $x$ satisfying $$0<|x|<\frac1{1+\sum\limits_{i=1}^n |a_i|}$$ (b) Let $P(x)=b_0+b_1x+\cdots+b_rx^r$ be a non zero polynomial with real coefficients. Let $m$ be the smallest number such that $b_m \neq 0$. Prove that the graph of $y=P(x)$ cuts the $x$-axis at the origin (i.e., $P$ changes signs at $x=0$) if and only if $m$ is an odd integer.

2021 Taiwan TST Round 3, A

A magician intends to perform the following trick. She announces a positive integer $n$, along with $2n$ real numbers $x_1 < \dots < x_{2n}$, to the audience. A member of the audience then secretly chooses a polynomial $P(x)$ of degree $n$ with real coefficients, computes the $2n$ values $P(x_1), \dots , P(x_{2n})$, and writes down these $2n$ values on the blackboard in non-decreasing order. After that the magician announces the secret polynomial to the audience. Can the magician find a strategy to perform such a trick?

1976 Bulgaria National Olympiad, Problem 2

Find all polynomials $p(x)$ satisfying the condition: $$p(x^2-2x)=p(x-2)^2.$$

2018 Iran Team Selection Test, 3

$n>1$ and distinct positive integers $a_1,a_2,\ldots,a_{n+1}$ are  given. Does there exist a polynomial $p(x)\in\Bbb{Z}[x]$ of degree  $\le n$ that satisfies the following conditions? a. $\forall_{1\le i < j\le n+1}: \gcd(p(a_i),p(a_j))>1 $ b. $\forall_{1\le i < j < k\le n+1}: \gcd(p(a_i),p(a_j),p(a_k))=1 $ [i]Proposed by Mojtaba Zare[/i]

2010 ISI B.Stat Entrance Exam, 6

Consider the equation $n^2+(n+1)^4=5(n+2)^3$ (a) Show that any integer of the form $3m+1$ or $3m+2$ can not be a solution of this equation. (b) Does the equation have a solution in positive integers?

2014 France Team Selection Test, 3

Prove that there exist infinitely many positive integers $n$ such that the largest prime divisor of $n^4 + n^2 + 1$ is equal to the largest prime divisor of $(n+1)^4 + (n+1)^2 +1$.

1954 Moscow Mathematical Olympiad, 267

Prove that if $$x^4_0+ a_1x^3_0+ a_2x^2_0+ a_3x_0 + a_4 = 0 \ \ and \ \ 4x^3_0+ 3a_1x^2_0+ 2a_2x_0 + a_3 = 0,$$ then $x^4 + a_1x^3 + a_2x^2 + a_3x + a_4 $ is a mutliple of $(x - x_0)^2$.