Found problems: 3597
1990 Baltic Way, 11
Prove that the modulus of an integer root of a polynomial with integer coefficients cannot exceed the maximum of the moduli of the coefficients.
1991 Turkey Team Selection Test, 3
Let $f$ be a function on defined on $|x|<1$ such that $f\left (\tfrac1{10}\right )$ is rational and $f(x)= \sum_{i=1}^{\infty} a_i x^i $ where $a_i\in{\{0,1,2,3,4,5,6,7,8,9\}}$. Prove that $f$ can be written as $f(x)= \frac{p(x)}{q(x)}$ where $p(x)$ and $q(x)$ are polynomials with integer coefficients.
2010 Moldova Team Selection Test, 1
Let $ p\in\mathbb{R}_\plus{}$ and $ k\in\mathbb{R}_\plus{}$. The polynomial $ F(x)\equal{}x^4\plus{}a_3x^3\plus{}a_2x^2\plus{}a_1x\plus{}k^4$ with real coefficients has $ 4$ negative roots. Prove that $ F(p)\geq(p\plus{}k)^4$
2001 National Olympiad First Round, 4
How many real solution does the equation $\dfrac{x^{2000}}{2001} + 2\sqrt 3 x^2 - 2\sqrt 5 x + \sqrt 3$ have?
$
\textbf{(A)}\ 0
\qquad\textbf{(B)}\ 1
\qquad\textbf{(C)}\ 11
\qquad\textbf{(D)}\ 12
\qquad\textbf{(E)}\ \text{None of the preceding}
$
2016 Lusophon Mathematical Olympiad, 3
Suppose a real number $a$ is a root of a polynomial with integer coefficients $P(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0$. Let $G=|a_n|+|a_{n-1}|+...+|a_1|+|a_0|$. We say that $G$ is a [i]gingado [/i] of $a$.
For example, as $2$ is root of $P(x)=x^2-x-2$, $G=|1|+|-1|+|-2|=4$, we say that $4$ is a [i]gingado[/i] of $2$. What is the fourth largest real number $a$ such that $3$ is a [i]gingado [/i] of $a$?
1969 IMO Shortlist, 28
$(GBR 5)$ Let us define $u_0 = 0, u_1 = 1$ and for $n\ge 0, u_{n+2} = au_{n+1}+bu_n, a$ and $b$ being positive integers. Express $u_n$ as a polynomial in $a$ and $b.$ Prove the result. Given that $b$ is prime, prove that $b$ divides $a(u_b -1).$
2007 South africa National Olympiad, 2
Consider the equation $ x^4 \equal{} ax^3 \plus{} bx^2 \plus{} cx \plus{} 2007$, where $ a,b,c$ are real numbers. Determine the largest value of $ b$ for which this equation has exactly three distinct solutions, all of which are integers.
2007 Iran Team Selection Test, 1
Does there exist a a sequence $a_{0},a_{1},a_{2},\dots$ in $\mathbb N$, such that for each $i\neq j, (a_{i},a_{j})=1$, and for each $n$, the polynomial $\sum_{i=0}^{n}a_{i}x^{i}$ is irreducible in $\mathbb Z[x]$?
[i]By Omid Hatami[/i]
ICMC 7, 5
[list=a]
[*]Is there a non-linear integer-coefficient polynomial $P(x)$ and an integer $N{}$ such that all integers greater than $N{}$ may be written as the greatest common divisor of $P(a){}$ and $P(b){}$ for positive integers $a>b$?
[*]Is there a non-linear integer-coefficient polynomial $Q(x)$ and an integer $M{}$ such that all integers greater than $M{}$ may be written as $Q(a) - Q(b)$ for positive integers $a>b$?
[/list][i]Proposed by Dylan Toh[/i]
2011 Bogdan Stan, 1
Consider the multiplicative group $ \left\{ \left.A_k:=\left(\begin{matrix} 2^k& 2^k\\2^k& 2^k\end{matrix}\right)\right| k\in\mathbb{Z} \right\} . $
[b]a)[/b] Prove that $A_xA_y=A_{x+y+1} , $ for all integers $ x,y. $
[b]b)[/b] Show that, for all integers $ t, $ the multiplicative group $ \left\{ A_{jt-1}|j\in\mathbb{Z} \right\} $ is a subgroup of $ G. $
[b]c)[/b] Determine the linear integer polynomials $ P $ for which it exists an isomorphism $ \left(
G,\cdot \right)\stackrel{\eta}{\cong}\left( \mathbb{Z} ,+ \right) $ such that $ \eta\left( A_k \right) =P(k). $
1995 Austrian-Polish Competition, 3
Let $P(x) = x^4 + x^3 + x^2 + x + 1$. Show that there exist two non-constant polynomials $Q(y)$ and $R(y)$ with integer coefficients such that for all $Q(y) \cdot R(y)= P(5y^2)$ for all $y$ .
2006 Irish Math Olympiad, 3
let x,y are positive and $ \in R$ that : $ x\plus{}2y\equal{}1$.prove that :
\[ \frac{1}{x}\plus{}\frac{2}{y} \geq \frac{25}{1\plus{}48xy^2}\]
2021 Thailand TST, 3
A magician intends to perform the following trick. She announces a positive integer $n$, along with $2n$ real numbers $x_1 < \dots < x_{2n}$, to the audience. A member of the audience then secretly chooses a polynomial $P(x)$ of degree $n$ with real coefficients, computes the $2n$ values $P(x_1), \dots , P(x_{2n})$, and writes down these $2n$ values on the blackboard in non-decreasing order. After that the magician announces the secret polynomial to the audience. Can the magician find a strategy to perform such a trick?
2009 ISI B.Stat Entrance Exam, 4
A sequence is called an [i]arithmetic progression of the first order[/i] if the differences of the successive terms are constant. It is called an [i]arithmetic progression of the second order[/i] if the differences of the successive terms form an arithmetic progression of the first order. In general, for $k\geq 2$, a sequence is called an [i]arithmetic progression of the $k$-th order[/i] if the differences of the successive terms form an arithmetic progression of the $(k-1)$-th order.
The numbers
\[4,6,13,27,50,84\]
are the first six terms of an arithmetic progression of some order. What is its least possible order? Find a formula for the $n$-th term of this progression.
2019 Korea Junior Math Olympiad., 5
For prime number $p$, prove that there are integers $a$, $b$, $c$, $d$ such that for every integer $n$, the expression $n^4+1-\left( n^2+an+b \right) \left(n^2+cn+d \right)$ is a multiple of $p$.
2011 China Team Selection Test, 2
Let $\ell$ be a positive integer, and let $m,n$ be positive integers with $m\geq n$, such that $A_1,A_2,\cdots,A_m,B_1,\cdots,B_m$ are $m+n$ pairwise distinct subsets of the set $\{1,2,\cdots,\ell\}$. It is known that $A_i\Delta B_j$ are pairwise distinct, $1\leq i\leq m, 1\leq j\leq n$, and runs over all nonempty subsets of $\{1,2,\cdots,\ell\}$. Find all possible values of $m,n$.
2021 Romanian Master of Mathematics Shortlist, A2
Let $n$ be a positive integer and let $x_1,\ldots,x_n,y_1,\ldots,y_n$ be integers satisfying the following
condition: the numbers $x_1,\ldots,x_n$ are pairwise distinct and for every positive integer $m$ there
exists a polynomial $P_m$ with integer coefficients such that $P_m(x_i) - y_i$, $i=1,\ldots,n$, are all divisible by $m$. Prove that there exists a polynomial $P$ with integer coefficients such that $P(x_i) = y_i$ for all $i=1,\ldots,n$.
2008 Iran MO (3rd Round), 1
Prove that for $ n > 0$ and $ a\neq0$ the polynomial $ p(z) \equal{} az^{2n \plus{} 1} \plus{} bz^{2n} \plus{} \bar bz \plus{} \bar a$ has a root on unit circle
2006 Petru Moroșan-Trident, 1
Prove that the polynom $ X^3-aX-a+1 $ has three integer roots, for an infinite number of integers $ a. $
[i]Liviu Parsan[/i]
2004 Iran Team Selection Test, 6
$p$ is a polynomial with integer coefficients and for every natural $n$ we have $p(n)>n$. $x_k $ is a sequence that: $x_1=1, x_{i+1}=p(x_i)$ for every $N$ one of $x_i$ is divisible by $N.$ Prove that $p(x)=x+1$
2008 Harvard-MIT Mathematics Tournament, 6
A [i]root of unity[/i] is a complex number that is a solution to $ z^n \equal{} 1$ for some positive integer $ n$. Determine the number of roots of unity that are also roots of $ z^2 \plus{} az \plus{} b \equal{} 0$ for some integers $ a$ and $ b$.
2025 India STEMS Category C, 1
Let $\mathcal{P}$ be the set of all polynomials with coefficients in $\{0, 1\}$. Suppose $a, b$ are non-zero integers such that for every $f \in \mathcal{P}$ with $f(a)\neq 0$, we have $f(a) \mid f(b)$. Prove that $a=b$.
[i]Proposed by Shashank Ingalagavi and Krutarth Shah[/i]
2007 Federal Competition For Advanced Students, Part 2, 1
Let $ M$ be the set of all polynomials $ P(x)$ with pairwise distinct integer roots, integer coefficients and all absolut values of the coefficients less than $ 2007$. Which is the highest degree among all the polynomials of the set $ M$?
1953 Poland - Second Round, 1
Prove that the equation
$$ (x - a) (x - c) + 2 (x - b) (x - d) = 0,$$
in which $ a < b < c < d $, has two real roots.
2017 Miklós Schweitzer, 5
For every non-constant polynomial $p$, let $H_p=\big\{z\in \mathbb{C} \, \big| \, |p(z)|=1\big\}$. Prove that if $H_p=H_q$ for some polynomials $p,q$, then there exists a polynomial $r$ such that $p=r^m$ and $q=\xi\cdot r^n$ for some positive integers $m,n$ and constant $|\xi|=1$.