This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3597

2004 Putnam, A4

Show that for any positive integer $n$ there is an integer $N$ such that the product $x_1x_2\cdots x_n$ can be expressed identically in the form \[x_1x_2\cdots x_n=\sum_{i=1}^Nc_i(a_{i1}x_1+a_{i2}x_2+\cdots +a_{in}x_n)^n\] where the $c_i$ are rational numbers and each $a_{ij}$ is one of the numbers, $-1,0,1.$

2011 Tournament of Towns, 7

The vertices of a regular $45$-gon are painted into three colors so that the number of vertices of each color is the same. Prove that three vertices of each color can be selected so that three triangles formed by the chosen vertices of the same color are all equal.

2007 Putnam, 4

A [i]repunit[/i] is a positive integer whose digits in base $ 10$ are all ones. Find all polynomials $ f$ with real coefficients such that if $ n$ is a repunit, then so is $ f(n).$

2012 Vietnam Team Selection Test, 1

Consider the sequence $(x_n)_{n\ge 1}$ where $x_1=1,x_2=2011$ and $x_{n+2}=4022x_{n+1}-x_n$ for all $n\in\mathbb{N}$. Prove that $\frac{x_{2012}+1}{2012}$ is a perfect square.

2021 Estonia Team Selection Test, 2

Find all polynomials $P(x, y)$ with real coefficients which for all real numbers $x$ and $y$ satisfy $P(x + y, x - y) = 2P(x, y)$.

1999 National Olympiad First Round, 24

Polynomial $ f\left(x\right)$ satisfies $ \left(x \minus{} 1\right)f\left(x \plus{} 1\right) \minus{} \left(x \plus{} 2\right)f\left(x\right) \equal{} 0$ for every $ x\in \Re$. If $ f\left(2\right) \equal{} 6$, $ f\left({\tfrac{3}{2}} \right) \equal{} ?$ $\textbf{(A)}\ -6 \qquad\textbf{(B)}\ 0 \qquad\textbf{(C)}\ \frac {3}{2} \qquad\textbf{(D)}\ \frac {15}{8} \qquad\textbf{(E)}\ \text{None}$

2006 Germany Team Selection Test, 1

Let $ a$, $ b$, $ c$, $ d$, $ e$, $ f$ be positive integers and let $ S = a+b+c+d+e+f$. Suppose that the number $ S$ divides $ abc+def$ and $ ab+bc+ca-de-ef-df$. Prove that $ S$ is composite.

1983 AIME Problems, 4

A machine-shop cutting tool has the shape of a notched circle, as shown. The radius of the circle is $\sqrt{50}$ cm, the length of $AB$ is 6 cm, and that of $BC$ is 2 cm. The angle $ABC$ is a right angle. Find the square of the distance (in centimeters) from $B$ to the center of the circle. [asy] size(150); defaultpen(linewidth(0.65)+fontsize(11)); real r=10; pair O=(0,0),A=r*dir(45),B=(A.x,A.y-r),C; path P=circle(O,r); C=intersectionpoint(B--(B.x+r,B.y),P); draw(Arc(O, r, 45, 360-17.0312)); draw(A--B--C);dot(A); dot(B); dot(C); label("$A$",A,NE); label("$B$",B,SW); label("$C$",C,SE); [/asy]

1968 Putnam, A5

Tags: polynomial
Find the smallest possible $\alpha\in \mathbb{R}$ such that if $P(x)=ax^2+bx+c$ satisfies $|P(x)|\leq1 $ for $x\in [0,1]$ , then we also have $|P'(0)|\leq \alpha$.

2006 Stanford Mathematics Tournament, 11

Polynomial $P(x)=c_{2006}x^{2006}+c_{2005}x^{2005}+\ldots+c_1x+c_0$ has roots $r_1,r_2,\ldots,r_{2006}$. The coefficients satisfy $2i\tfrac{c_i}{c_{2006}-i}=2j\tfrac{c_j}{c_{2006}-j}$ for all pairs of integers $0\le i,j\le2006$. Given that $\sum_{i\ne j,i=1,j=1}^{2006} \tfrac{r_i}{r_j}=42$, determine $\sum_{i=1}^{2006} (r_1+r_2+\ldots+r_{2006})$.

1982 All Soviet Union Mathematical Olympiad, 347

Can you find three polynomials $P,Q,R$ of three variables $x,y,z$, providing the condition: a)$P(x-y+z)^3 + Q(y-z-1)^3 +R(z-2x+1)^3 = 1$ b)$P(x-y+z)^3 + Q(y-z-1)^3 +R(z-x+1)^3 = 1$ for all $x,y,z$?

2020 Nigerian Senior MO Round 2, 1

Let $k$ be a real number. Define on the set of reals the operation $x*y$= $\frac{xy}{x+y+k}$ whenever $x+y$ does not equal $-k$. Let $x_1<x_2<x_3<x_4$ be the roots of $t^4=27(t^2+t+1)$.suppose that $[(x_1*x_2)*x_3]*x_4=1$. Find all possible values of $k$

2014 Vietnam Team Selection Test, 5

Find all polynomials $P(x),Q(x)$ which have integer coefficients and satify the following condtion: For the sequence $(x_n )$ defined by \[x_0=2014,x_{2n+1}=P(x_{2n}),x_{2n}=Q(x_{2n-1}) \quad n\geq 1\] for every positive integer $m$ is a divisor of some non-zero element of $(x_n )$

2015 AIME Problems, 10

Let $f(x)$ be a third-degree polynomial with real coefficients satisfying \[|f(1)|=|f(2)|=|f(3)|=|f(5)|=|f(6)|=|f(7)|=12.\] Find $|f(0)|$.

PEN A Problems, 4

If $a, b, c$ are positive integers such that \[0 < a^{2}+b^{2}-abc \le c,\] show that $a^{2}+b^{2}-abc$ is a perfect square.

1984 Spain Mathematical Olympiad, 8

Find the remainder upon division by $x^2-1$ of the determinant $$\begin{vmatrix} x^3+3x & 2 & 1 & 0 \\ x^2+5x & 3 & 0 & 2 \\x^4 +x^2+1 & 2 & 1 & 3 \\x^5 +1 & 1 & 2 & 3 \\ \end{vmatrix}$$

1997 Slovenia Team Selection Test, 2

Find all polynomials $p$ with real coefficients such that for all real $x$ , $xp(x)p(1-x)+x^3 +100 \ge 0$.

2016 CCA Math Bonanza, T6

Consider the polynomials $P\left(x\right)=16x^4+40x^3+41x^2+20x+16$ and $Q\left(x\right)=4x^2+5x+2$. If $a$ is a real number, what is the smallest possible value of $\frac{P\left(a\right)}{Q\left(a\right)}$? [i]2016 CCA Math Bonanza Team #6[/i]

2007 IMC, 6

Let $ f \ne 0$ be a polynomial with real coefficients. Define the sequence $ f_{0}, f_{1}, f_{2}, \ldots$ of polynomials by $ f_{0}= f$ and $ f_{n+1}= f_{n}+f_{n}'$ for every $ n \ge 0$. Prove that there exists a number $ N$ such that for every $ n \ge N$, all roots of $ f_{n}$ are real.

2023 Romanian Master of Mathematics, 3

Let $n\geq 2$ be an integer and let $f$ be a $4n$-variable polynomial with real coefficients. Assume that, for any $2n$ points $(x_1,y_1),\dots,(x_{2n},y_{2n})$ in the Cartesian plane, $f(x_1,y_1,\dots,x_{2n},y_{2n})=0$ if and only if the points form the vertices of a regular $2n$-gon in some order, or are all equal. Determine the smallest possible degree of $f$. (Note, for example, that the degree of the polynomial $$g(x,y)=4x^3y^4+yx+x-2$$ is $7$ because $7=3+4$.) [i]Ankan Bhattacharya[/i]

2010 Postal Coaching, 2

Find all non-negative integers $m,n,p,q$ such that \[ p^mq^n = (p+q)^2 +1 . \]

2018 Hong Kong TST, 2

Find all polynomials $f$ such that $f$ has non-negative integer coefficients, $f(1)=7$ and $f(2)=2017$.

2007 AIME Problems, 8

The polynomial $P(x)$ is cubic. What is the largest value of $k$ for which the polynomials $Q_{1}(x) = x^{2}+(k-29)x-k$ and $Q_{2}(x) = 2x^{2}+(2k-43)x+k$ are both factors of $P(x)$?

2011 Morocco National Olympiad, 2

Solve in $(\mathbb{R}_{+}^{*})^{4}$ the following system : $\left\{\begin{matrix} x+y+z+t=4\\ \frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}=5-\frac{1}{xyzt} \end{matrix}\right.$

2023 Romania National Olympiad, 2

Let $p$ be a prime number, $n$ a natural number which is not divisible by $p$, and $\mathbb{K}$ is a finite field, with $char(K) = p, |K| = p^n, 1_{\mathbb{K}}$ unity element and $\widehat{0} = 0_{\mathbb{K}}.$ For every $m \in \mathbb{N}^{*}$ we note $ \widehat{m} = \underbrace{1_{\mathbb{K}} + 1_{\mathbb{K}} + \ldots + 1_{\mathbb{K}}}_{m \text{ times}} $ and define the polynomial \[ f_m = \sum_{k = 0}^{m} (-1)^{m - k} \widehat{\binom{m}{k}} X^{p^k} \in \mathbb{K}[X]. \] a) Show that roots of $f_1$ are $ \left\{ \widehat{k} | k \in \{0,1,2, \ldots , p - 1 \} \right\}$. b) Let $m \in \mathbb{N}^{*}.$ Determine the set of roots from $\mathbb{K}$ of polynomial $f_{m}.$