Found problems: 3597
1980 AMC 12/AHSME, 28
The polynomial $x^{2n}+1+(x+1)^{2n}$ is not divisible by $x^2+x+1$ if $n$ equals
$\text{(A)} \ 17 \qquad \text{(B)} \ 20 \qquad \text{(C)} \ 21 \qquad \text{(D)} \ 64 \qquad \text{(E)} \ 65$
1997 Moldova Team Selection Test, 5
Let $P(x)\in\mathbb{Z}[x]$ with deg $P=2015$. Let $Q(x)=(P(x))^2-9$. Prove that: the number of distinct roots of $Q(x)$ can not bigger than $2015$
1993 APMO, 3
Let
\begin{eqnarray*} f(x) & = & a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 \ \ \mbox{and} \\ g(x) & = & c_{n+1} x^{n+1} + c_n x^n + \cdots + c_0 \end{eqnarray*}
be non-zero polynomials with real coefficients such that $g(x) = (x+r)f(x)$ for some real number $r$. If $a = \max(|a_n|, \ldots, |a_0|)$ and $c = \max(|c_{n+1}|, \ldots, |c_0|)$, prove that $\frac{a}{c} \leq n+1$.
1976 Euclid, 4
Source: 1976 Euclid Part B Problem 4
-----
The remainder when $f(x)=x^5-2x^4+ax^3-x^2+bx-2$ is divided by $x+1$ is $-7$. When $f(x)$ is divided by $x-2$ the remainder is $32$. Determine the remainder when $f(x)$ is divided by $x-1$.
1998 Brazil Team Selection Test, Problem 3
Find all functions $f: \mathbb N \to \mathbb N$ for which
\[ f(n) + f(n+1) = f(n+2)f(n+3)-1996\]
holds for all positive integers $n$.
2010 South East Mathematical Olympiad, 2
For any set $A=\{a_1,a_2,\cdots,a_m\}$, let $P(A)=a_1a_2\cdots a_m$. Let $n={2010\choose99}$, and let $A_1, A_2,\cdots,A_n$ be all $99$-element subsets of $\{1,2,\cdots,2010\}$. Prove that $2010|\sum^{n}_{i=1}P(A_i)$.
1987 IMO Longlists, 50
Let $P,Q,R$ be polynomials with real coefficients, satisfying $P^4+Q^4 = R^2$. Prove that there exist real numbers $p, q, r$ and a polynomial $S$ such that $P = pS, Q = qS$ and $R = rS^2$.
[hide="Variants"]Variants. (1) $P^4 + Q^4 = R^4$; (2) $\gcd(P,Q) = 1$ ; (3) $\pm P^4 + Q^4 = R^2$ or $R^4.$[/hide]
2019 Romanian Master of Mathematics Shortlist, original P6
Let $P(x)$ be a nonconstant complex coefficient polynomial and let $Q(x,y)=P(x)-P(y).$ Suppose that polynomial $Q(x,y)$ has exactly $k$ linear factors unproportional two by tow (without counting repetitons). Let $R(x,y)$ be factor of $Q(x,y)$ of degree strictly smaller than $k$. Prove that $R(x,y)$ is a product of linear polynomials.
[b]Note: [/b] The [i]degree[/i] of nontrivial polynomial $\sum_{m}\sum_{n}c_{m,n}x^{m}y^{n}$ is the maximum of $m+n$ along all nonzero coefficients $c_{m,n}.$ Two polynomials are [i]proportional[/i] if one of them is the other times a complex constant.
[i]Proposed by Navid Safaie[/i]
1996 IMO Shortlist, 7
Let $ f$ be a function from the set of real numbers $ \mathbb{R}$ into itself such for all $ x \in \mathbb{R},$ we have $ |f(x)| \leq 1$ and
\[ f \left( x \plus{} \frac{13}{42} \right) \plus{} f(x) \equal{} f \left( x \plus{} \frac{1}{6} \right) \plus{} f \left( x \plus{} \frac{1}{7} \right).\]
Prove that $ f$ is a periodic function (that is, there exists a non-zero real number $ c$ such $ f(x\plus{}c) \equal{} f(x)$ for all $ x \in \mathbb{R}$).
1964 Miklós Schweitzer, 2
Let $ p$ be a prime and let \[ l_k(x,y)\equal{}a_kx\plus{}b_ky \;(k\equal{}1,2,...,p^2)\ .\] be homogeneous linear polynomials with integral coefficients. Suppose that for every pair $ (\xi,\eta)$ of integers, not both divisible by $ p$, the values $ l_k(\xi,\eta), \;1\leq k\leq p^2 $, represent every residue class $ \textrm{mod} \;p$ exactly $ p$ times. Prove that the set of pairs $ \{(a_k,b_k): 1\leq k \leq p^2 \}$ is identical $ \textrm{mod} \;p$ with the set $ \{(m,n): 0\leq m,n \leq p\minus{}1 \}.$
1991 Austrian-Polish Competition, 4
Let $P(x)$ be a real polynomial with $P(x) \ge 0$ for $0 \le x \le 1$. Show that there exist polynomials $P_i (x) (i = 0, 1,2)$ with $P_i (x) \ge 0$ for all real x such that $P (x) = P_0 (x) + xP_1 (x)( 1- x)P_2 (x)$.
2021 Princeton University Math Competition, A6 / B8
Let $f$ be a polynomial. We say that a complex number $p$ is a double attractor if there exists a polynomial $h(x)$ so that $f(x)-f(p) = h(x)(x-p)^2$ for all x \in R. Now, consider the polynomial $$f(x) = 12x^5 - 15x^4 - 40x^3 + 540x^2 - 2160x + 1,$$ and suppose that it’s double attractors are $a_1, a_2, ... , a_n$. If the sum $\sum^{n}_{i=1}|a_i|$ can be written as $\sqrt{a} +\sqrt{b}$, where $a, b$ are positive integers, find $a + b$.
1982 IMO Shortlist, 7
Let $p(x)$ be a cubic polynomial with integer coefficients with leading coefficient $1$ and with one of its roots equal to the product of the other two. Show that $2p(-1)$ is a multiple of $p(1)+p(-1)-2(1+p(0)).$
2013 Balkan MO Shortlist, A5
Determine all positive integers$ n$ such that $f_n(x,y,z) = x^{2n} + y^{2n} + z^{2n} - xy - yz - zx$ divides $g_n(x,y, z) = (x - y)^{5n} + (y -z)^{5n} + (z - x)^{5n}$, as polynomials in $x, y, z$ with integer coefficients.
2014 Iran Team Selection Test, 3
let $m,n\in \mathbb{N}$ and $p(x),q(x),h(x)$ are polynomials with real Coefficients such that $p(x)$ is Descending.
and for all $x\in \mathbb{R}$
$p(q(nx+m)+h(x))=n(q(p(x))+h(x))+m$ .
prove that dont exist function $f:\mathbb{R}\rightarrow \mathbb{R}$ such that for all $x\in \mathbb{R}$
$f(q(p(x))+h(x))=f(x)^{2}+1$
2014 Math Prize for Girls Olympiad, 3
Say that a positive integer is [i]sweet[/i] if it uses only the digits 0, 1, 2, 4, and 8. For instance, 2014 is sweet. There are sweet integers whose squares are sweet: some examples (not necessarily the smallest) are 1, 2, 11, 12, 20, 100, 202, and 210. There are sweet integers whose cubes are sweet: some examples (not necessarily the smallest) are 1, 2, 10, 20, 200, 202, 281, and 2424. Prove that there exists a sweet positive integer $n$ whose square and cube are both sweet, such that the sum of all the digits of $n$ is 2014.
2018 Canadian Mathematical Olympiad Qualification, 7
Let $n$ be a positive integer, with prime factorization $$n = p_1^{e_1}p_2^{e_2} \cdots p_r^{e_r}$$ for distinct primes $p_1, \ldots, p_r$ and $e_i$ positive integers. Define $$rad(n) = p_1p_2\cdots p_r,$$ the product of all distinct prime factors of $n$.
Find all polynomials $P(x)$ with rational coefficients such that there exists infinitely many positive integers $n$ with $P(n) = rad(n)$.
1995 IMC, 9
Let all roots of an $n$-th degree polynomial $P(z)$ with complex coefficients lie on the unit circle in the complex plane. Prove that all roots of the polynomial
$$2zP'(z)-nP(z)$$
lie on the same circle.
1982 Miklós Schweitzer, 6
For every positive $ \alpha$, natural number $ n$, and at most $ \alpha n$ points $ x_i$, construct a trigonometric polynomial $ P(x)$ of degree at most $ n$ for which \[ P(x_i) \leq 1, \; \int_0^{2 \pi} P(x)dx=0,\ \; \textrm{and}\ \; \max P(x) > cn\ ,\] where the constant $ c$ depends only on $ \alpha$.
[i]G. Halasz[/i]
2002 China Team Selection Test, 3
The positive integers $ \alpha, \beta, \gamma$ are the roots of a polynomial $ f(x)$ with degree $ 4$ and the coefficient of the first term is $ 1$. If there exists an integer such that $ f(\minus{}1)\equal{}f^2(s)$.
Prove that $ \alpha\beta$ is not a perfect square.
2014 Putnam, 4
Show that for each positive integer $n,$ all the roots of the polynomial \[\sum_{k=0}^n 2^{k(n-k)}x^k\] are real numbers.
2014 Contests, 3
Find all polynomials $P(x)$ with real coefficients that satisfy \[P(x\sqrt{2})=P(x+\sqrt{1-x^2})\]for all real $x$ with $|x|\le 1$.
2007 Princeton University Math Competition, 2
How many positive integers $n$ are there such that $n+2$ divides $(n+18)^2$?
2010 Contests, 4
Find all polynomials $P(x)$ with real coefficients such that
\[(x-2010)P(x+67)=xP(x) \]
for every integer $x$.
2017 CHMMC (Fall), 10
Let $\alpha$ be the unique real root of the polynomial $x^3-2x^2+x-1$. It is known that $1<\alpha<2$. We define the sequence of polynomials $\left\{{p_n(x)}\right\}_{n\ge0}$ by taking $p_0(x)=x$ and setting
\begin{align*}
p_{n+1}(x)=(p_n(x))^2-\alpha
\end{align*}
How many distinct real roots does $p_{10}(x)$ have?