This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3597

1983 AIME Problems, 3

What is the product of the real roots of the equation \[x^2 + 18x + 30 = 2 \sqrt{x^2 + 18x + 45}\,\,?\]

2008 All-Russian Olympiad, 2

Numbers $ a,b,c$ are such that the equation $ x^3 \plus{} ax^2 \plus{} bx \plus{} c$ has three real roots.Prove that if $ \minus{} 2\leq a \plus{} b \plus{} c\leq 0$,then at least one of these roots belongs to the segment $ [0,2]$

2007 USA Team Selection Test, 6

For a polynomial $ P(x)$ with integer coefficients, $ r(2i \minus{} 1)$ (for $ i \equal{} 1,2,3,\ldots,512$) is the remainder obtained when $ P(2i \minus{} 1)$ is divided by $ 1024$. The sequence \[ (r(1),r(3),\ldots,r(1023)) \] is called the [i]remainder sequence[/i] of $ P(x)$. A remainder sequence is called [i]complete[/i] if it is a permutation of $ (1,3,5,\ldots,1023)$. Prove that there are no more than $ 2^{35}$ different complete remainder sequences.

2005 District Olympiad, 3

a)Let $A,B\in \mathcal{M}_3(\mathbb{R})$ such that $\text{rank}\ A>\text{rank}\ B$. Prove that $\text{rank}\ A^2\ge \text{rank}\ B^2$. b)Find the non-constant polynomials $f\in \mathbb{R}[X]$ such that $(\forall)A,B\in \mathcal{M}_4(\mathbb{R})$ with $\text{rank}\ A>\text{rank}\ B$, we have $\text{rank}\ f(A)>\text{rank}\ f(B)$.

2018-IMOC, A2

For arbitrary non-constant polynomials $f_1(x),\ldots,f_{2018}(x)\in\mathbb Z[x]$, is it always possible to find a polynomial $g(x)\in\mathbb Z[x]$ such that $$f_1(g(x)),\ldots,f_{2018}(g(x))$$are all reducible.

1992 Tournament Of Towns, (345) 3

Do there exist two polynomials $P(x)$ and $Q(x)$ with integer coefficients such that $$(P-Q)(x), \,\,\,\, P(x) \,\,\,\, and \,\,\,\,(P+Q)(x)$$ are squares of polynomials (and $Q$ is not equal to $cP$, where $c$ is a real number)? (V Prasolov)

2000 Turkey MO (2nd round), 1

Let $p$ be a prime number. $T(x)$ is a polynomial with integer coefficients and degree from the set $\{0,1,...,p-1\}$ and such that $T(n) \equiv T(m) (mod p)$ for some integers m and n implies that $ m \equiv n (mod p)$. Determine the maximum possible value of degree of $T(x)$

2004 USA Team Selection Test, 1

Suppose $a_1, a_2, \ldots, a_n$ and $b_1, b_2, \ldots, b_n$ are real numbers such that \[ (a_1 ^ 2 + a_2 ^ 2 + \cdots + a_n ^ 2 -1)(b_1 ^ 2 + b_2 ^ 2 + \cdots + b_n ^ 2 - 1) > (a_1 b_1 + a_2 b_2 + \cdots + a_n b_n - 1)^2. \] Prove that $a_1 ^ 2 + a_2 ^ 2 + \cdots + a_n ^ 2 > 1$ and $b_1 ^ 2 + b_2 ^ 2 + \cdots + b_n ^ 2 > 1$.

2017 AMC 10, 24

For certain real numbers $a$, $b$, and $c$, the polynomial \[g(x) = x^3 + ax^2 + x + 10\] has three distinct roots, and each root of $g(x)$ is also a root of the polynomial \[f(x) = x^4 + x^3 + bx^2 + 100x + c.\] What is $f(1)$? $\textbf{(A)}\ -9009 \qquad\textbf{(B)}\ -8008 \qquad\textbf{(C)}\ -7007 \qquad\textbf{(D)}\ -6006 \qquad\textbf{(E)}\ -5005$

1967 Polish MO Finals, 4

Prove that the polynomial $ x^3 + x + 1 $ is a factor of the polynomial $ P_n(x) = x^{n + 2} + (x+1)^{2n+1} $ for every integer $ n \geq 0 $.

1970 IMO Longlists, 12

Let $\{x_i\}, 1\le i\le 6$ be a given set of six integers, none of which are divisible by $7$. $(a)$ Prove that at least one of the expressions of the form $x_1\pm x_2\pm x_3\pm x_4\pm x_5\pm x_6$ is divisible by $7$, where the $\pm$ signs are independent of each other. $(b)$ Generalize the result to every prime number.

2005 Estonia Team Selection Test, 4

Find all pairs $(a, b)$ of real numbers such that the roots of polynomials $6x^2 -24x -4a$ and $x^3 + ax^2 + bx - 8$ are all non-negative real numbers.

1991 Hungary-Israel Binational, 1

Suppose $f(x)$ is a polynomial with integer coefficients such that $f(0) = 11$ and $f(x_1) = f(x_2) = ... = f(x_n) = 2002$ for some distinct integers $x_1, x_2, . . . , x_n$. Find the largest possible value of $n$.

2024/2025 TOURNAMENT OF TOWNS, P2

Two polynomials with real coefficients have the leading coefficients equal to 1 . Each polynomial has an odd degree that is equal to the number of its distinct real roots. The product of the values of the first polynomial at the roots of the second polynomial is equal to 2024. Find the product of the values of the second polynomial at the roots of the first one. Sergey Yanzhinov

1988 China Team Selection Test, 4

There is a broken computer such that only three primitive data $c$, $1$ and $-1$ are reserved. Only allowed operation may take $u$ and $v$ and output $u \cdot v + v.$ At the beginning, $u,v \in \{c, 1, -1\}.$ After then, it can also take the value of the previous step (only one step back) besides $\{c, 1, -1\}$. Prove that for any polynomial $P_{n}(x) = a_0 \cdot x^n + a_1 \cdot x^{n-1} + \ldots + a_n$ with integer coefficients, the value of $P_n(c)$ can be computed using this computer after only finite operation.

2011 Cuba MO, 1

Let $P(x) = x^3 + (t - 1)x^2 - (t + 3)x + 1$. For what values of real $t$ the sum of the squares and the reciprocals of the roots of $ P(x)$ is minimum?

2005 Federal Math Competition of S&M, Problem 3

Determine all polynomials $p$ with real coefficients for which $p(0)=0$ and $$f(f(n))+n=4f(n)\qquad\text{for all }n\in\mathbb N,$$where $f(n)=\lfloor p(n)\rfloor$.

2015 Harvard-MIT Mathematics Tournament, 1

Let $Q$ be a polynomial \[Q(x)=a_0+a_1x+\cdots+a_nx^n,\] where $a_0,\ldots,a_n$ are nonnegative integers. Given that $Q(1)=4$ and $Q(5)=152$, find $Q(6)$.

2016 Switzerland Team Selection Test, Problem 6

Prove that for every nonnegative integer $n$, the number $7^{7^{n}}+1$ is the product of at least $2n+3$ (not necessarily distinct) primes.

1986 Putnam, A6

Let $a_1, a_2, \dots, a_n$ be real numbers, and let $b_1, b_2, \dots, b_n$ be distinct positive integers. Suppose that there is a polynomial $f(x)$ satisfying the identity \[ (1-x)^n f(x) = 1 + \sum_{i=1}^n a_i x^{b_i}. \] Find a simple expression (not involving any sums) for $f(1)$ in terms of $b_1, b_2, \dots, b_n$ and $n$ (but independent of $a_1, a_2, \dots, a_n$).

2016 Thailand TSTST, 1

Find all polynomials $P\in\mathbb{Z}[x]$ such that $$|P(x)-x|\leq x^2+1$$ for all real numbers $x$.

Russian TST 2018, P3

Let $a < b$ be positive integers. Prove that there is a positive integer $n{}$ and a polynomial of the form \[\pm1\pm x\pm x^2\pm\cdots\pm x^n,\]divisible by the polynomial $1+x^a+x^b$.

1992 USAMO, 5

Let $\, P(z) \,$ be a polynomial with complex coefficients which is of degree $\, 1992 \,$ and has distinct zeros. Prove that there exist complex numbers $\, a_1, a_2, \ldots, a_{1992} \,$ such that $\, P(z) \,$ divides the polynomial \[ \left( \cdots \left( (z-a_1)^2 - a_2 \right)^2 \cdots - a_{1991} \right)^2 - a_{1992}. \]

2025 All-Russian Olympiad, 10.6

What is the smallest value of \( k \) such that for any polynomial \( f(x) \) of degree $100$ with real coefficients, there exists a polynomial \( g(x) \) of degree at most \( k \) with real coefficients such that the graphs of \( y = f(x) \) and \( y = g(x) \) intersect at exactly $100$ points? \\

2019 AIME Problems, 8

The polynomial $f(z)=az^{2018}+bz^{2017}+cz^{2016}$ has real coefficients not exceeding $2019$, and $f(\tfrac{1+\sqrt{3}i}{2})=2015+2019\sqrt{3}i$. Find the remainder when $f(1)$ is divided by $1000$.