This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3597

2016 Iran MO (3rd Round), 1

Let $F$ be a subset of the set of positive integers with at least two elements and $P(x)$ be a polynomial with integer coefficients such that for any two distinct elements of $F$ like $a$ and $b$, the following two conditions hold [list] [*] $a+b \in F$, and [*] $\gcd(P(a),P(b))=1$. [/list] Prove that $P(x)$ is a constant polynomial.

2008 Romania National Olympiad, 4

Let $ A\equal{}(a_{ij})_{1\leq i,j\leq n}$ be a real $ n\times n$ matrix, such that $ a_{ij} \plus{} a_{ji} \equal{} 0$, for all $ i,j$. Prove that for all non-negative real numbers $ x,y$ we have \[ \det(A\plus{}xI_n)\cdot \det(A\plus{}yI_n) \geq \det (A\plus{}\sqrt{xy}I_n)^2.\]

2023 Thailand Online MO, 2

Let $P(x)$ be a polynomial with real coefficients. Prove that not all roots of $x^3P(x)+1$ are real.

2025 India STEMS Category A, 6

Let $P \in \mathbb{R}[x]$. Suppose that the multiset of real roots (where roots are counted with multiplicity) of $P(x)-x$ and $P^3(x)-x$ are distinct. Prove that for all $n\in \mathbb{N}$, $P^n(x)-x$ has at least $\sigma(n)-2$ distinct real roots. (Here $P^n(x):=P(P^{n-1}(x))$ with $P^1(x) = P(x)$, and $\sigma(n)$ is the sum of all positive divisors of $n$). [i]Proposed by Malay Mahajan[/i]

2011 IMO Shortlist, 6

Let $P(x)$ and $Q(x)$ be two polynomials with integer coefficients, such that no nonconstant polynomial with rational coefficients divides both $P(x)$ and $Q(x).$ Suppose that for every positive integer $n$ the integers $P(n)$ and $Q(n)$ are positive, and $2^{Q(n)}-1$ divides $3^{P(n)}-1.$ Prove that $Q(x)$ is a constant polynomial. [i]Proposed by Oleksiy Klurman, Ukraine[/i]

1987 IMO Longlists, 69

Let $n\ge2$ be an integer. Prove that if $k^2+k+n$ is prime for all integers $k$ such that $0\le k\le\sqrt{n\over3}$, then $k^2+k+n$ is prime for all integers $k$ such that $0\le k\le n-2$.[i](IMO Problem 6)[/i] [b][i]Original Formulation[/i][/b] Let $f(x) = x^2 + x + p$, $p \in \mathbb N.$ Prove that if the numbers $f(0), f(1), \cdots , f( \sqrt{p\over 3} )$ are primes, then all the numbers $f(0), f(1), \cdots , f(p - 2)$ are primes. [i]Proposed by Soviet Union. [/i]

2015 NIMO Problems, 5

Let $a, b, c, d, e,$ and $f$ be real numbers. Define the polynomials \[ P(x) = 2x^4 - 26x^3 + ax^2 + bx + c \quad\text{ and }\quad Q(x) = 5x^4 - 80x^3 + dx^2 + ex + f. \] Let $S$ be the set of all complex numbers which are a root of [i]either[/i] $P$ or $Q$ (or both). Given that $S = \{1,2,3,4,5\}$, compute $P(6) \cdot Q(6).$ [i]Proposed by Michael Tang[/i]

2001 IMC, 4

$p(x)$ is a polynomial of degree $n$ with every coefficient $0 $ or $\pm1$, and $p(x)$ is divisible by $ (x - 1)^k$ for some integer $ k > 0$. $q$ is a prime such that $\frac{q}{\ln q}< \frac{k}{\ln n+1}$. Show that the complex $q$-th roots of unity must be roots of $ p(x). $

2014 Iran Team Selection Test, 2

find all polynomials with integer coefficients that $P(\mathbb{Z})= ${$p(a):a\in \mathbb{Z}$} has a Geometric progression.

2016 AMC 12/AHSME, 24

There is a smallest positive real number $a$ such that there exists a positive real number $b$ such that all the roots of the polynomial $x^3-ax^2+bx-a$ are real. In fact, for this value of $a$ the value of $b$ is unique. What is this value of $b$? $\textbf{(A)}\ 8\qquad\textbf{(B)}\ 9\qquad\textbf{(C)}\ 10\qquad\textbf{(D)}\ 11\qquad\textbf{(E)}\ 12$

2003 China Team Selection Test, 2

Can we find positive reals $a_1, a_2, \dots, a_{2002}$ such that for any positive integer $k$, with $1 \leq k \leq 2002$, every complex root $z$ of the following polynomial $f(x)$ satisfies the condition $|\text{Im } z| \leq |\text{Re } z|$, \[f(x)=a_{k+2001}x^{2001}+a_{k+2000}x^{2000}+ \cdots + a_{k+1}x+a_k,\] where $a_{2002+i}=a_i$, for $i=1,2, \dots, 2001$.

2002 China Team Selection Test, 1

Let $P_n(x)=a_0 + a_1x + \cdots + a_nx^n$, with $n \geq 2$, be a real-coefficient polynomial. Prove that if there exists $a > 0$ such that \begin{align*} P_n(x) = (x + a)^2 \left( \sum_{i=0}^{n-2} b_i x^i \right), \end{align*} where $b_i$ are positive real numbers, then there exists some $i$, with $1 \leq i \leq n-1$, such that \[a_i^2 - 4a_{i-1}a_{i+1} \leq 0.\]

2007 IMC, 6

How many nonzero coefficients can a polynomial $ P(x)$ have if its coefficients are integers and $ |P(z)| \le 2$ for any complex number $ z$ of unit length?

2004 Tuymaada Olympiad, 1

Do there exist a sequence $a_{1}, a_{2}, a_{3}, \ldots$ of real numbers and a non-constant polynomial $P(x)$ such that $a_{m}+a_{n}=P(mn)$ for every positive integral $m$ and $n?$ [i]Proposed by A. Golovanov[/i]

2009 Stars Of Mathematics, 4

Determine all non-constant polynomials $ f\in \mathbb{Z}[X]$ with the property that there exists $ k\in\mathbb{N}^*$ such that for any prime number $ p$, $ f(p)$ has at most $ k$ distinct prime divisors.

2013 Romania National Olympiad, 2

Given a ring $\left( A,+,\cdot \right)$ that meets both of the following conditions: (1) $A$ is not a field, and (2) For every non-invertible element $x$ of $ A$, there is an integer $m>1$ (depending on $x$) such that $x=x^2+x^3+\ldots+x^{2^m}$. Show that (a) $x+x=0$ for every $x \in A$, and (b) $x^2=x$ for every non-invertible $x\in A$.

2014 NIMO Problems, 1

Find, with proof, all real numbers $x$ satisfying $x = 2\left( 2 \left( 2\left( 2\left( 2x-1 \right)-1 \right)-1 \right)-1 \right)-1$. [i]Proposed by Evan Chen[/i]

2015 Switzerland Team Selection Test, 2

Let $a$, $b$, $c$ be real numbers greater than or equal to $1$. Prove that \[ \min \left(\frac{10a^2-5a+1}{b^2-5b+10},\frac{10b^2-5b+1}{c^2-5c+10},\frac{10c^2-5c+1}{a^2-5a+10}\right )\leq abc. \]

1990 IberoAmerican, 3

Let $b$, $c$ be integer numbers, and define $f(x)=(x+b)^2-c$. i) If $p$ is a prime number such that $c$ is divisible by $p$ but not by $p^{2}$, show that for every integer $n$, $f(n)$ is not divisible by $p^{2}$. ii) Let $q \neq 2$ be a prime divisor of $c$. If $q$ divides $f(n)$ for some integer $n$, show that for every integer $r$ there exists an integer $n'$ such that $f(n')$ is divisible by $qr$.

2013 NIMO Problems, 2

Let $f$ be a non-constant polynomial such that \[ f(x-1) + f(x) + f(x+1) = \frac {f(x)^2}{2013x} \] for all nonzero real numbers $x$. Find the sum of all possible values of $f(1)$. [i]Proposed by Ahaan S. Rungta[/i]

2014 Harvard-MIT Mathematics Tournament, 28

Let $f(n)$ and $g(n)$ be polynomials of degree $2014$ such that $f(n)+(-1)^ng(n)=2^n$ for $n=1,2,\ldots,4030$. Find the coefficient of $x^{2014}$ in $g(x)$.

2013 India IMO Training Camp, 2

Let $n \ge 2$ be an integer and $f_1(x), f_2(x), \ldots, f_{n}(x)$ a sequence of polynomials with integer coefficients. One is allowed to make moves $M_1, M_2, \ldots $ as follows: in the $k$-th move $M_k$ one chooses an element $f(x)$ of the sequence with degree of $f$ at least $2$ and replaces it with $(f(x) - f(k))/(x-k)$. The process stops when all the elements of the sequence are of degree $1$. If $f_1(x) = f_2(x) = \cdots = f_n(x) = x^n + 1$, determine whether or not it is possible to make appropriate moves such that the process stops with a sequence of $n$ identical polynomials of degree 1.

2019 Saudi Arabia IMO TST, 2

Let non-constant polynomial $f(x)$ with real coefficients is given with the following property: for any positive integer $n$ and $k$, the value of expression $$\frac{f(n + 1)f(n + 2)... f(n + k)}{ f(1)f(2) ... f(k)} \in Z$$ Prove that $f(x)$ is divisible by $x$

1998 Romania Team Selection Test, 3

The lateral surface of a cylinder of revolution is divided by $n-1$ planes parallel to the base and $m$ parallel generators into $mn$ cases $( n\ge 1,m\ge 3)$. Two cases will be called neighbouring cases if they have a common side. Prove that it is possible to write a real number in each case such that each number is equal to the sum of the numbers of the neighbouring cases and not all the numbers are zero if and only if there exist integers $k,l$ such that $n+1$ does not divide $k$ and \[ \cos \frac{2l\pi}{m}+\cos\frac{k\pi}{n+1}=\frac{1}{2}\] [i]Ciprian Manolescu[/i]

2006 Purple Comet Problems, 11

Consider the polynomials \begin{align*}P(x) &= (x + \sqrt{2})(x^2 - 2x + 2)\\Q(x) &= (x - \sqrt{2})(x^2 + 2x + 2)\\R(x) &= (x^2 + 2)(x^8 + 16).\end{align*} Find the coefficient of $x^4$ in $P(x)\cdot Q(x)\cdot R(x)$.