This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3597

2018 AMC 12/AHSME, 5

What is the sum of all possible values of $k$ for which the polynomials $x^2 - 3x + 2$ and $x^2 - 5x + k$ have a root in common? $ \textbf{(A) }3 \qquad \textbf{(B) }4 \qquad \textbf{(C) }5 \qquad \textbf{(D) }6 \qquad \textbf{(E) }10 \qquad $

2010 Junior Balkan MO, 1

The real numbers $a$, $b$, $c$, $d$ satisfy simultaneously the equations \[abc -d = 1, \ \ \ bcd - a = 2, \ \ \ cda- b = 3, \ \ \ dab - c = -6.\] Prove that $a + b + c + d \not = 0$.

2016 IMO, 4

A set of positive integers is called [i]fragrant[/i] if it contains at least two elements and each of its elements has a prime factor in common with at least one of the other elements. Let $P(n)=n^2+n+1$. What is the least possible positive integer value of $b$ such that there exists a non-negative integer $a$ for which the set $$\{P(a+1),P(a+2),\ldots,P(a+b)\}$$ is fragrant?

2024 India Iran Friendly Math Competition, 3

Let $n \ge 3$ be an integer. Let $\mathcal{P}$ denote the set of vertices of a regular $n$-gon on the plane. A polynomial $f(x, y)$ of two variables with real coefficients is called $\textit{regular}$ if $$\mathcal{P} = \{(u, v) \in \mathbb{R}^2 \, | \, f(u, v) = 0 \}.$$ Find the smallest possible value of the degree of a regular polynomial. [i]Proposed by Navid Safaei[/i]

2014 Taiwan TST Round 3, 2

Let $m \neq 0 $ be an integer. Find all polynomials $P(x) $ with real coefficients such that \[ (x^3 - mx^2 +1 ) P(x+1) + (x^3+mx^2+1) P(x-1) =2(x^3 - mx +1 ) P(x) \] for all real number $x$.

2010 Saint Petersburg Mathematical Olympiad, 1

$f(x)$ is square trinomial. Is it always possible to find polynomial $g(x)$ with fourth degree, such that $f(g(x))=0$ has not roots?

2010 IMAR Test, 1

Show that a sequence $(a_n)$ of $+1$ and $-1$ is periodic with period a power of $2$ if and only if $a_n=(-1)^{P(n)}$, where $P$ is an integer-valued polynomial with rational coefficients.

1977 All Soviet Union Mathematical Olympiad, 251

Let us consider one variable polynomials with the senior coefficient equal to one. We shall say that two polynomials $P(x)$ and $Q(x)$ commute, if $P(Q(x))=Q(P(x))$ (i.e. we obtain the same polynomial, having collected the similar terms). a) For every a find all $Q$ such that the $Q$ degree is not greater than three, and $Q$ commutes with $(x^2 - a)$. b) Let $P$ be a square polynomial, and $k$ is a natural number. Prove that there is not more than one commuting with $P$ $k$-degree polynomial. c) Find the $4$-degree and $8$-degree polynomials commuting with the given square polynomial $P$. d) $R$ and $Q$ commute with the same square polynomial $P$. Prove that $Q$ and $R$ commute. e) Prove that there exists a sequence $P_2, P_3, ... , P_n, ...$ ($P_k$ is $k$-degree polynomial), such that $P_2(x) = x^2 - 2$, and all the polynomials in this infinite sequence pairwise commute.

2012 Olympic Revenge, 2

We define $(x_1, x_2, \ldots , x_n) \Delta (y_1, y_2, \ldots , y_n) = \left( \sum_{i=1}^{n}x_iy_{2-i}, \sum_{i=1}^{n}x_iy_{3-i}, \ldots , \sum_{i=1}^{n}x_iy_{n+1-i} \right)$, where the indices are taken modulo $n$. Besides this, if $v$ is a vector, we define $v^k = v$, if $k=1$, or $v^k = v \Delta v^{k-1}$, otherwise. Prove that, if $(x_1, x_2, \ldots , x_n)^k = (0, 0, \ldots , 0)$, for some natural number $k$, then $x_1 = x_2 = \ldots = x_n = 0$.

2005 Croatia National Olympiad, 1

Let $a \not = 0, b, c$ be real numbers. If $x_{1}$ is a root of the equation $ax^{2}+bx+c = 0$ and $x_{2}$ a root of $-ax^{2}+bx+c = 0$, show that there is a root $x_{3}$ of $\frac{a}{2}\cdot x^{2}+bx+c = 0$ between $x_{1}$ and $x_{2}$.

1991 Baltic Way, 4

A polynomial $p$ with integer coefficients is such that $p(-n) < p(n) < n$ for some integer $n$. Prove that $p(-n) < -n$.

2011 Bulgaria National Olympiad, 2

Let $f_1(x)$ be a polynomial of degree $2$ with the leading coefficient positive and $f_{n+1}(x) =f_1(f_n(x))$ for $n\ge 1.$ Prove that if the equation $f_2(x)=0$ has four different non-positive real roots, then for arbitrary $n$ then $f_n(x)$ has $2^n$ different real roots.

2006 Italy TST, 3

Let $P(x)$ be a polynomial with complex coefficients such that $P(0)\neq 0$. Prove that there exists a multiple of $P(x)$ with real positive coefficients if and only if $P(x)$ has no real positive root.

1994 Balkan MO, 2

Let $n$ be an integer. Prove that the polynomial $f(x)$ has at most one zero, where \[ f(x) = x^4 - 1994 x^3 + (1993+n)x^2 - 11x + n . \] [i]Greece[/i]

2016 Iran MO (3rd Round), 2

Let $P$ be a polynomial with integer coefficients. We say $P$ is [i]good [/i] if there exist infinitely many prime numbers $q$ such that the set $$X=\left\{P(n) \mod q : \quad n\in \mathbb N\right\}$$ has at least $\frac{q+1}{2}$ members. Prove that the polynomial $x^3+x$ is good.

Kvant 2022, M2700

What is the maximal possible number of roots on the interval (0,1) for a polynomial of degree 2022 with integer coefficients and with the leading coefficient equal to 1?

1992 All Soviet Union Mathematical Olympiad, 576

If you have an algorithm for finding all the real zeros of any cubic polynomial, how do you find the real solutions to $x = p(y), y = p(x)$, where $p$ is a cubic polynomial?

2012 Tuymaada Olympiad, 2

Let $P(x)$ be a real quadratic trinomial, so that for all $x\in \mathbb{R}$ the inequality $P(x^3+x)\geq P(x^2+1)$ holds. Find the sum of the roots of $P(x)$. [i]Proposed by A. Golovanov, M. Ivanov, K. Kokhas[/i]

2019 Baltic Way, 20

Let us consider a polynomial $P(x)$ with integers coefficients satisfying $$P(-1)=-4,\ P(-3)=-40,\text{ and } P(-5)=-156.$$ What is the largest possible number of integers $x$ satisfying $$P(P(x))=x^2?$$

2017 China Team Selection Test, 4

Show that there exists a degree $58$ monic polynomial $$P(x) = x^{58} + a_1x^{57} + \cdots + a_{58}$$ such that $P(x)$ has exactly $29$ positive real roots and $29$ negative real roots and that $\log_{2017} |a_i|$ is a positive integer for all $1 \leq i \leq 58$.

2003 Romania National Olympiad, 4

Let be a $ 3\times 3 $ real matrix $ A. $ Prove the following statements. [b]a)[/b] $ f(A)\neq O_3, $ for any polynomials $ f\in\mathbb{R} [X] $ whose roots are not real. [b]b)[/b] $ \exists n\in\mathbb{N}\quad \left( A+\text{adj} (A) \right)^{2n} =\left( A \right)^{2n} +\left( \text{adj} (A) \right)^{2n}\iff \text{det} (A)=0 $ [i]Laurențiu Panaitopol[/i]

2021 China Team Selection Test, 4

Let $f(x),g(x)$ be two polynomials with integer coefficients. It is known that for infinitely many prime $p$, there exist integer $m_p$ such that $$f(a) \equiv g(a+m_p) \pmod p$$ holds for all $a \in \mathbb{Z}.$ Prove that there exists a rational number $r$ such that $$f(x)=g(x+r).$$

2001 Hungary-Israel Binational, 4

Let $P (x) = x^{3}-3x+1.$ Find the polynomial $Q$ whose roots are the fifth powers of the roots of $P$.

1978 AMC 12/AHSME, 20

Tags: polynomial
If $a,b,c$ are non-zero real numbers such that \[\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a},\] and \[x=\frac{(a+b)(b+c)(c+a)}{abc},\] and $x<0$, then $x$ equals $\textbf{(A) }-1\qquad\textbf{(B) }-2\qquad\textbf{(C) }-4\qquad\textbf{(D) }-6\qquad \textbf{(E) }-8$

2013 Iran Team Selection Test, 5

Do there exist natural numbers $a, b$ and $c$ such that $a^2+b^2+c^2$ is divisible by $2013(ab+bc+ca)$? [i]Proposed by Mahan Malihi[/i]