This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3597

2012 Tournament of Towns, 3

Let $n$ be a positive integer. Prove that there exist integers $a_1, a_2,..., a_n$ such that for any integer $x$, the number $(... (((x^2 + a_1)^2 + a_2)^2 + ...)^2 + a_{n-1})^2 + a_n$ is divisible by $2n - 1$.

2006 Iran MO (2nd round), 2

Determine all polynomials $P(x,y)$ with real coefficients such that \[P(x+y,x-y)=2P(x,y) \qquad \forall x,y\in\mathbb{R}.\]

2012 Iran Team Selection Test, 3

Let $n$ be a positive integer. Let $S$ be a subset of points on the plane with these conditions: $i)$ There does not exist $n$ lines in the plane such that every element of $S$ be on at least one of them. $ii)$ for all $X \in S$ there exists $n$ lines in the plane such that every element of $S - {X} $ be on at least one of them. Find maximum of $\mid S\mid$. [i]Proposed by Erfan Salavati[/i]

2017 Hong Kong TST, 3

Let $f(x)$ be a monic cubic polynomial with $f(0)=-64$, and all roots of $f(x)$ are non-negative real numbers. What is the largest possible value of $f(-1)$? (A polynomial is monic if its leading coefficient is 1.)

2025 India STEMS Category B, 1

Let $\mathcal{P}$ be the set of all polynomials with coefficients in $\{0, 1\}$. Suppose $a, b$ are non-zero integers such that for every $f \in \mathcal{P}$ with $f(a)\neq 0$, we have $f(a) \mid f(b)$. Prove that $a=b$. [i]Proposed by Shashank Ingalagavi and Krutarth Shah[/i]

2007 Germany Team Selection Test, 1

Let $ k \in \mathbb{N}$. A polynomial is called [i]$ k$-valid[/i] if all its coefficients are integers between 0 and $ k$ inclusively. (Here we don't consider 0 to be a natural number.) [b]a.)[/b] For $ n \in \mathbb{N}$ let $ a_n$ be the number of 5-valid polynomials $ p$ which satisfy $ p(3) = n.$ Prove that each natural number occurs in the sequence $ (a_n)_n$ at least once but only finitely often. [b]b.)[/b] For $ n \in \mathbb{N}$ let $ a_n$ be the number of 4-valid polynomials $ p$ which satisfy $ p(3) = n.$ Prove that each natural number occurs infinitely often in the sequence $ (a_n)_n$ .

1976 IMO Longlists, 40

Let $g(x)$ be a fixed polynomial with real coefficients and define $f(x)$ by $f(x) =x^2 + xg(x^3)$. Show that $f(x)$ is not divisible by $x^2 - x + 1$.

2006 Pre-Preparation Course Examination, 2

a) Show that you can divide an angle $\theta$ to three equal parts using compass and ruler if and only if the polynomial $4t^3-3t-\cos (\theta)$ is reducible over $\mathbb{Q}(\cos (\theta))$. b) Is it always possible to divide an angle into five equal parts?

1989 IMO Longlists, 56

Let $ P_1(x), P_2(x), \ldots, P_n(x)$ be real polynomials, i.e. they have real coefficients. Show that there exist real polynomials $ A_r(x),B_r(x) \quad (r \equal{} 1, 2, 3)$ such that \[ \sum^n_{s\equal{}1} \left\{ P_s(x) \right \}^2 \equiv \left( A_1(x) \right)^2 \plus{} \left( B_1(x) \right)^2\] \[ \sum^n_{s\equal{}1} \left\{ P_s(x) \right \}^2 \equiv \left( A_2(x) \right)^2 \plus{} x \left( B_2(x) \right)^2\] \[ \sum^n_{s\equal{}1} \left\{ P_s(x) \right \}^2 \equiv \left( A_3(x) \right)^2 \minus{} x \left( B_3(x) \right)^2\]

2008 CHKMO, 2

is there any polynomial of $deg=2007$ with integer coefficients,such that for any integer $n$,$f(n),f(f(n)),f(f(f(n))),...$ is coprime to each other?

2015 İberoAmerican, 3

Let $\alpha$ and $\beta$ be the roots of $x^{2} - qx + 1$, where $q$ is a rational number larger than $2$. Let $s_1 = \alpha + \beta$, $t_1 = 1$, and for all integers $n \geq 2$: $s_n = \alpha^n + \beta^n$ $t_n = s_{n-1} + 2s_{n-2} + \cdot \cdot \cdot + (n - 1)s_{1} + n$ Prove that, for all odd integers $n$, $t_n$ is the square of a rational number.

2015 Greece National Olympiad, 2

Let $P(x)=ax^3+(b-a)x^2-(c+b)x+c$ and $Q(x)=x^4+(b-1)x^3+(a-b)x^2-(c+a)x+c$ be polynomials of $x$ with $a,b,c$ non-zero real numbers and $b>0$.If $P(x)$ has three distinct real roots $x_0,x_1,x_2$ which are also roots of $Q(x)$ then: A)Prove that $abc>28$, B)If $a,b,c$ are non-zero integers with $b>0$,find all their possible values.

1998 Vietnam National Olympiad, 3

Find all positive integer $n$ such that there exists a $P\in\mathbb{R}[x]$ satisfying $P(x^{1998}-x^{-1998})=x^{n}-x^{-n}\forall x\in\mathbb{R}-\{0\}$.

2006 Austrian-Polish Competition, 2

Find all polynomials $P(x)$ with real coefficients satisfying the equation \[(x+1)^{3}P(x-1)-(x-1)^{3}P(x+1)=4(x^{2}-1) P(x)\] for all real numbers $x$.

1983 IMO Longlists, 66

Let $ a$, $ b$ and $ c$ be the lengths of the sides of a triangle. Prove that \[ a^{2}b(a \minus{} b) \plus{} b^{2}c(b \minus{} c) \plus{} c^{2}a(c \minus{} a)\ge 0. \] Determine when equality occurs.

1970 Miklós Schweitzer, 12

Let $ \vartheta_1,...,\vartheta_n$ be independent, uniformly distributed, random variables in the unit interval $ [0,1]$. Define \[ h(x)\equal{} \frac1n \# \{k: \; \vartheta_k<x\ \}.\] Prove that the probability that there is an $ x_0 \in (0,1)$ such that $ h(x_0)\equal{}x_0$, is equal to $ 1\minus{} \frac1n.$ [i]G. Tusnady[/i]

2010 Contests, 2

Let $P_1(x) = ax^2 - bx - c$, $P_2(x) = bx^2 - cx - a$, $P_3(x) = cx^2 - ax - b$ be three quadratic polynomials. Suppose there exists a real number $\alpha$ such that $P_1(\alpha) = P_2(\alpha) = P_3(\alpha)$. Prove that $a = b = c$.

2000 Denmark MO - Mohr Contest, 5

Determine all possible values of $x+\frac{1}{x}$ , where the real number $x$ satisfies the equation $$x^4+5x^3-4x^2+5x+1=0$$ and solve this equation.

2015 Postal Coaching, 3

Let $n\ge2$ and let $p(x)=x^n+a_{n-1}x^{n-1} \cdots a_1x+a_0$ be a polynomial with real coefficients. Prove that if for some positive integer $k(<n)$ the polynomial $(x-1)^{k+1}$ divides $p(x)$ then $$\sum_{i=0}^{n-1}|a_i| \ge 1 +\frac{2k^2}{n}$$

2018 Saint Petersburg Mathematical Olympiad, 4

$f(x)$ is polynomial with integer coefficients, with module not exceeded $5*10^6$. $f(x)=nx$ has integer root for $n=1,2,...,20$. Prove that $f(0)=0$

KoMaL A Problems 2024/2025, A. 898

Let $n$ be a given positive integer. Ana and Bob play the following game: Ana chooses a polynomial $p$ of degree $n$ with integer coefficients. In each round, Bob can choose a finite set $S$ of positive integers, and Ana responds with a list containing the values of the polynomial $p$ evaluated at the elements of $S$ with multiplicity (sorted in increasing order). Determine, in terms of $n$, the smallest positive integer $k$ such that Bob can always determine the polynomial $p$ in at most $k$ rounds. [i]Proposed by: Andrei Chirita, Cambridge[/i]

2008 Moldova MO 11-12, 5

Find the least positive integer $ n$ so that the polynomial $ P(X)\equal{}\sqrt3\cdot X^{n\plus{}1}\minus{}X^n\minus{}1$ has at least one root of modulus $ 1$.

2011 Mongolia Team Selection Test, 3

Let $m$ and $n$ be positive integers such that $m>n$ and $m \equiv n \pmod{2}$. If $(m^2-n^2+1) \mid n^2-1$, then prove that $m^2-n^2+1$ is a perfect square. (proposed by G. Batzaya, folklore)

2010 ELMO Shortlist, 4

Let $r$ and $s$ be positive integers. Define $a_0 = 0$, $a_1 = 1$, and $a_n = ra_{n-1} + sa_{n-2}$ for $n \geq 2$. Let $f_n = a_1a_2\cdots a_n$. Prove that $\displaystyle\frac{f_n}{f_kf_{n-k}}$ is an integer for all integers $n$ and $k$ such that $0 < k < n$. [i]Evan O' Dorney.[/i]

1970 Canada National Olympiad, 10

Given the polynomial \[ f(x)=x^n+a_{1}x^{n-1}+a_{2}x^{n-2}+\cdots+a_{n-1}x+a_n \] with integer coefficients $a_1,a_2,\ldots,a_n$, and given also that there exist four distinct integers $a$, $b$, $c$ and $d$ such that \[ f(a)=f(b)=f(c)=f(d)=5, \] show that there is no integer $k$ such that $f(k)=8$.