This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 364

2013 Ukraine Team Selection Test, 11

Specified natural number $a$. Prove that there are an infinite number of prime numbers $p$ such that for some natural $n$ the number $2^{2^n} + a$ is divisible by $p$.

2016 Latvia Baltic Way TST, 17

Can you find five prime numbers $p, q, r, s, t$ such that $p^3+q^3+r^3+s^3 =t^3$?

2017 International Zhautykov Olympiad, 2

For each positive integer $k$ denote $C(k)$ to be sum of its distinct prime divisors. For example $C(1)=0,C(2)=2,C(45)=8$. Find all positive integers $n$ for which $C(2^n+1)=C(n)$.

2010 Hanoi Open Mathematics Competitions, 7

Determine all positive integer $a$ such that the equation $2x^2 - 30x + a = 0$ has two prime roots, i.e. both roots are prime numbers.

2009 Tournament Of Towns, 7

Tags: number theory , gcd , prime
Initially a number $6$ is written on a blackboard. At $n$-th step an integer $k$ on the blackboard is replaced by $k+gcd(k,n)$. Prove that at each step the number on the blackboard increases either by $1$ or by a prime number.

2009 Postal Coaching, 2

Find all pairs $(x, y)$ of natural numbers $x$ and $y$ such that $\frac{xy^2}{x+y}$ is a prime

2011 Indonesia TST, 4

Given $N = 2^ap_1p_2...p_m$, $m \ge 1$, $a \in N$ with $p_1, p_2,..., p_m$ are different primes. It is known that $\sigma (N) = 3N $ where $\sigma (N)$ is the sum of all positive integers which are factors of $N$. Show that there exists a prime number $p$ such that $2^p- 1$ is also a prime, and $2^p - 1|N$.

2018 German National Olympiad, 5

We define a sequence of positive integers $a_1,a_2,a_3,\dots$ as follows: Let $a_1=1$ and iteratively, for $k =2,3,\dots$ let $a_k$ be the largest prime factor of $1+a_1a_2\cdots a_{k-1}$. Show that the number $11$ is not an element of this sequence.

2013 NZMOC Camp Selection Problems, 12

For a positive integer $n$, let $p(n)$ denote the largest prime divisor of $n$. Show that there exist infinitely many positive integers m such that $p(m-1) < p(m) < p(m + 1)$.

2003 Cuba MO, 1

Given the following list of numbers: $$1990, 1991, 1992, ..., 2002, 2003, 2003, 2003, ..., 2003$$ where the number $2003$ appears $12$ times. Is it possible to write these numbers in some order so that the $100$-digit number that we get is prime?

2017 Brazil National Olympiad, 6.

[b]6.[/b] Let $a$ be a positive integer and $p$ a prime divisor of $a^3-3a+1$, with $p \neq 3$. Prove that $p$ is of the form $9k+1$ or $9k-1$, where $k$ is integer.

1997 Mexico National Olympiad, 1

Determine all prime numbers $p$ for which $8p^4-3003$ is a positive prime number.

2013 Thailand Mathematical Olympiad, 10

Find all pairs of positive integers $(x, y)$ such that $\frac{xy^3}{x+y}$ is the cube of a prime.

2012 Dutch IMO TST, 1

For all positive integers $a$ and $b$, we de ne $a @ b = \frac{a - b}{gcd(a, b)}$ . Show that for every integer $n > 1$, the following holds: $n$ is a prime power if and only if for all positive integers $m$ such that $m < n$, it holds that $gcd(n, n @m) = 1$.

1996 Estonia National Olympiad, 4

Prove that for each prime number $p > 5$ there exists a positive integer n such that $p^n$ ends in $001$ in decimal representation.

2005 Austrian-Polish Competition, 4

Determine the smallest natural number $a\geq 2$ for which there exists a prime number $p$ and a natural number $b\geq 2$ such that \[\frac{a^p - a}{p}=b^2.\]

1978 IMO Shortlist, 17

Prove that for any positive integers $x, y, z$ with $xy-z^2 = 1$ one can find non-negative integers $a, b, c, d$ such that $x = a^2 + b^2, y = c^2 + d^2, z = ac + bd$. Set $z = (2q)!$ to deduce that for any prime number $p = 4q + 1$, $p$ can be represented as the sum of squares of two integers.

2020 Argentina National Olympiad, 4

Let $a$ and $b$ be positive integers such that $\frac{5a^4 + a^2}{b^4 + 3b^2 + 4}$ is an integer. Show that $a$ is not prime.

2015 NIMO Summer Contest, 8

It is given that the number $4^{11}+1$ is divisible by some prime greater than $1000$. Determine this prime. [i] Proposed by David Altizio [/i]

1978 IMO Longlists, 17

Prove that for any positive integers $x, y, z$ with $xy-z^2 = 1$ one can find non-negative integers $a, b, c, d$ such that $x = a^2 + b^2, y = c^2 + d^2, z = ac + bd$. Set $z = (2q)!$ to deduce that for any prime number $p = 4q + 1$, $p$ can be represented as the sum of squares of two integers.

2018 Peru IMO TST, 10

For each positive integer $m> 1$, let $P (m)$ be the product of all prime numbers that divide $m$. Define the sequence $a_1, a_2, a_3,...$ as followed: $a_1> 1$ is an arbitrary positive integer, $a_{n + 1} = a_n + P (a_n)$ for each positive integer $n$. Prove that there exist positive integers $j$ and $k$ such that $a_j$ is the product of the first $k$ prime numbers.

2017 Saudi Arabia BMO TST, 1

Find the smallest prime $q$ such that $$q = a_1^2 + b_1^2 = a_2^2 + 2b_2^2 = a_3^2 + 3b_3^2 = ... = a_{10}^ 2 + 10b_{10}^2$$ where $a_i, b_i(i = 1, 2, ...,10)$ are positive integers

Mathematical Minds 2024, P6

Consider the sequence $a_1, a_2, \dots$ of positive integers such that $a_1=2$ and $a_{n+1}=a_n^4+a_n^3-3a_n^2-a_n+2$, for all $n\geqslant 1$. Prove that there exist infinitely many prime numbers that don't divide any term of the sequence. [i]Proposed by Pavel Ciurea[/i]

2010 NZMOC Camp Selection Problems, 3

Find all positive integers n such that $n^5 + n + 1$ is prime.

2007 Thailand Mathematical Olympiad, 18

Let $p_k$ be the $k$-th prime number. Find the remainder when $\sum_{k=2}^{2550}p_k^{p_k^4-1}$ is divided by $2550$.