This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 364

2015 India IMO Training Camp, 2

Find all triples $(p, x, y)$ consisting of a prime number $p$ and two positive integers $x$ and $y$ such that $x^{p -1} + y$ and $x + y^ {p -1}$ are both powers of $p$. [i]Proposed by Belgium[/i]

1996 Estonia National Olympiad, 1

Let $p$ be a fixed prime. Find all pairs $(x,y)$ of positive numbers satisfying $p(x-y) = xy$.

2024 Abelkonkurransen Finale, 2a

Tags: prime , sequence , algebra
Positive integers $a_0<a_1<\dots<a_n$, are to be chosen so that $a_j-a_i$ is not a prime for any $i,j$ with $0 \le i <j \le n$. For each $n \ge 1$, determine the smallest possible value of $a_n$.

2009 Bundeswettbewerb Mathematik, 2

Let $n$ be an integer that is greater than $1$. Prove that the following two statements are equivalent: (A) There are positive integers $a, b$ and $c$ that are not greater than $n$ and for which that polynomial $ax^2 + bx + c$ has two different real roots $x_1$ and $x_2$ with $| x_2- x_1 | \le \frac{1}{n}$ (B) The number $n$ has at least two different prime divisors.

2023 Switzerland - Final Round, 6

Find all positive integers $n>2$ such that $$ n! \mid \prod_{ p<q\le n, p,q \, \text{primes}} (p+q)$$

2018 Costa Rica - Final Round, N4

Let $p$ be a prime number such that $p = 10^{d -1} + 10^{d-2} + ...+ 10 + 1$. Show that $d$ is a prime.

1949-56 Chisinau City MO, 7

Prove that if the product $1\cdot 2\cdot ...\cdot n$ ($n> 3$) is not divisible by $n + 1$, then $n + 1$ is prime.

2012 Dutch IMO TST, 1

For all positive integers $a$ and $b$, we de ne $a @ b = \frac{a - b}{gcd(a, b)}$ . Show that for every integer $n > 1$, the following holds: $n$ is a prime power if and only if for all positive integers $m$ such that $m < n$, it holds that $gcd(n, n @m) = 1$.

2016 Croatia Team Selection Test, Problem 4

Find all pairs $(p,q)$ of prime numbers such that $$ p(p^2 - p - 1) = q(2q + 3) .$$

2022 Indonesia TST, N

Let $n$ be a natural number, with the prime factorisation \[ n = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} \] where $p_1, \ldots, p_r$ are distinct primes, and $e_i$ is a natural number. Define \[ rad(n) = p_1p_2 \cdots p_r \] to be the product of all distinct prime factors of $n$. Determine all polynomials $P(x)$ with rational coefficients such that there exists infinitely many naturals $n$ satisfying $P(n) = rad(n)$.

2003 Denmark MO - Mohr Contest, 3

Determine the integers $n$ where $$|2n^2+9n+4|$$ is a prime number.

2008 May Olympiad, 3

In numbers $1010... 101$ Ones and zeros alternate, if there are $n$ ones, there are $n -1$ zeros ($n \ge 2$ ).Determine the values of $n$ for which the number $1010... 101$, which has $n$ ones, is prime.

1993 ITAMO, 2

Find all pairs $(p,q)$ of positive primes such that the equation $3x^2 - px + q = 0$ has two distinct rational roots.

2016 Croatia Team Selection Test, Problem 4

Let $p > 10^9$ be a prime number such that $4p + 1$ is also prime. Prove that the decimal expansion of $\frac{1}{4p+1}$ contains all the digits $0,1, \ldots, 9$.

1997 Austrian-Polish Competition, 5

Let $p_1,p_2,p_3,p_4$ be four distinct primes. Prove that there is no polynomial $Q(x) = ax^3 + bx^2 + cx + d$ with integer coefficients such that $|Q(p_1)| =|Q(p_2)| = |Q(p_3)|= |Q(p_4 )| = 3$.

2021 Nordic, 1

On a blackboard a finite number of integers greater than one are written. Every minute, Nordi additionally writes on the blackboard the smallest positive integer greater than every other integer on the blackboard and not divisible by any of the numbers on the blackboard. Show that from some point onwards Nordi only writes primes on the blackboard.

2024 Mexican Girls' Contest, 8

Find all positive integers \(n\) such that among the \(n\) numbers \[ 2n + 1, \, 2^2 n + 1, \, \ldots, \, 2^n n + 1 \] there are \(n\), \(n - 1\), or \(n - 2\) primes.

2013 VJIMC, Problem 1

Let $S_n$ denote the sum of the first $n$ prime numbers. Prove that for any $n$ there exists the square of an integer between $S_n$ and $S_{n+1}$.

2013 Taiwan TST Round 1, 1

Starting from 37, adding 5 before each previous term, forms the following sequence: \[37,537,5537,55537,555537,...\] How many prime numbers are there in this sequence?

2012 Mathcenter Contest + Longlist, 3

If $p,p^2+2$ are both primes, how many divisors does $p^5+2p^2$ have? [i](Zhuge Liang)[/i]

2019 Cono Sur Olympiad, 4

Find all positive prime numbers $p,q,r,s$ so that $p^2+2019=26(q^2+r^2+s^2)$.

1999 Tournament Of Towns, 2

Let $d = a^{1999} + b^{1999} + c^{1999}$ , where $a, b$ and $c$ are integers such that $a + b + c = 0$. (a) May it happen that $d = 2$? (b) May it happen that $d$ is prime? (V Senderov)

1997 Slovenia Team Selection Test, 6

Let $p$ be a prime number and $a$ be an integer. Prove that if $2^p +3^p = a^n$ for some integer $n$, then $n = 1$.

2018 Federal Competition For Advanced Students, P2, 3

There are $n$ children in a room. Each child has at least one piece of candy. In Round $1$, Round $2$, etc., additional pieces of candy are distributed among the children according to the following rule: In Round $k$, each child whose number of pieces of candy is relatively prime to $k$ receives an additional piece. Show that after a sufficient number of rounds the children in the room have at most two different numbers of pieces of candy. [i](Proposed by Theresia Eisenkölbl)[/i]

2001 Estonia Team Selection Test, 5

Find the exponent of $37$ in the representation of the number $111...... 11$ with $3\cdot 37^{2000}$ digits equals to $1$, as product of prime powers