This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 48

2005 China Team Selection Test, 1

Let $ b, m, n$ be positive integers such that $ b > 1$ and $ m \neq n.$ Prove that if $ b^m \minus{} 1$ and $ b^n \minus{} 1$ have the same prime divisors, then $ b \plus{} 1$ is a power of 2.

2014 France Team Selection Test, 3

Prove that there exist infinitely many positive integers $n$ such that the largest prime divisor of $n^4 + n^2 + 1$ is equal to the largest prime divisor of $(n+1)^4 + (n+1)^2 +1$.

VMEO II 2005, 3

Given positive integers $a_1$, $a_2$, $...$, $a_m$ ($m \ge 1$). Consider the sequence $\{u_n\}_{n=1}^{\infty}$, with $$u_n = a_1^n + a_2^n + ... + a_m^n.$$ We know that this sequence has a finite number of prime divisors. Prove that $a_1 = a_2 = ...= a_m$.

2024 Regional Olympiad of Mexico Southeast, 1

Find all pairs of positive integers \(a, b\) such that the numbers \(a+1\), \(b+1\), \(2a+1\), \(2b+1\), \(a+3b\), and \(b+3a\) are all prime numbers.

2008 IMO Shortlist, 6

Prove that there are infinitely many positive integers $ n$ such that $ n^{2} \plus{} 1$ has a prime divisor greater than $ 2n \plus{} \sqrt {2n}$. [i]Author: Kestutis Cesnavicius, Lithuania[/i]

1987 Austrian-Polish Competition, 2

Let $n$ be the square of an integer whose each prime divisor has an even number of decimal digits. Consider $P(x) = x^n - 1987x$. Show that if $x,y$ are rational numbers with $P(x) = P(y)$, then $x = y$.

2008 IMO, 3

Prove that there are infinitely many positive integers $ n$ such that $ n^{2} \plus{} 1$ has a prime divisor greater than $ 2n \plus{} \sqrt {2n}$. [i]Author: Kestutis Cesnavicius, Lithuania[/i]

2014 France Team Selection Test, 3

Prove that there exist infinitely many positive integers $n$ such that the largest prime divisor of $n^4 + n^2 + 1$ is equal to the largest prime divisor of $(n+1)^4 + (n+1)^2 +1$.

2009 Bundeswettbewerb Mathematik, 2

Let $n$ be an integer that is greater than $1$. Prove that the following two statements are equivalent: (A) There are positive integers $a, b$ and $c$ that are not greater than $n$ and for which that polynomial $ax^2 + bx + c$ has two different real roots $x_1$ and $x_2$ with $| x_2- x_1 | \le \frac{1}{n}$ (B) The number $n$ has at least two different prime divisors.

2015 Azerbaijan National Olympiad, 4

Natural number $M$ has $6$ divisors, such that sum of them are equal to $3500$.Find the all values of $M$.

1981 Austrian-Polish Competition, 7

Let $a > 3$ be an odd integer. Show that for every positive integer $n$ the number $a^{2^n}- 1$ has at least $n + 1$ distinct prime divisors.

2014 Brazil Team Selection Test, 2

Prove that there exist infinitely many positive integers $n$ such that the largest prime divisor of $n^4 + n^2 + 1$ is equal to the largest prime divisor of $(n+1)^4 + (n+1)^2 +1$.

2015 Taiwan TST Round 3, 3

Let $c \ge 1$ be an integer. Define a sequence of positive integers by $a_1 = c$ and \[a_{n+1}=a_n^3-4c\cdot a_n^2+5c^2\cdot a_n+c\] for all $n\ge 1$. Prove that for each integer $n \ge 2$ there exists a prime number $p$ dividing $a_n$ but none of the numbers $a_1 , \ldots , a_{n -1}$ . [i]Proposed by Austria[/i]

1986 Austrian-Polish Competition, 7

Let $k$ and $n$ be integers with $0 < k < n^2/4$ such that k has no prime divisor greater than $n$. Prove that $k$ divides $n!$.

2007 Indonesia TST, 2

Let $a > 3$ be an odd integer. Show that for every positive integer $n$ the number $a^{2^n}- 1$ has at least $n + 1$ distinct prime divisors.

2024 Bulgarian Autumn Math Competition, 10.3

Find all polynomials $P$ with integer coefficients, for which there exists a number $N$, such that for every natural number $n \geq N$, all prime divisors of $n+2^{\lfloor \sqrt{n} \rfloor}$ are also divisors of $P(n)$.

2014 Taiwan TST Round 1, 5

Prove that there exist infinitely many positive integers $n$ such that the largest prime divisor of $n^4 + n^2 + 1$ is equal to the largest prime divisor of $(n+1)^4 + (n+1)^2 +1$.

Russian TST 2014, P2

Prove that there exist infinitely many positive integers $n$ such that the largest prime divisor of $n^4 + n^2 + 1$ is equal to the largest prime divisor of $(n+1)^4 + (n+1)^2 +1$.

2018 Saudi Arabia IMO TST, 1

Denote $S$ as the set of prime divisors of all integers of form $2^{n^2+1} - 3^n, n \in Z^+$. Prove that $S$ and $P-S$ both contain infinitely many elements (where $P$ is set of prime numbers).

1997 IMO Shortlist, 14

Let $ b, m, n$ be positive integers such that $ b > 1$ and $ m \neq n.$ Prove that if $ b^m \minus{} 1$ and $ b^n \minus{} 1$ have the same prime divisors, then $ b \plus{} 1$ is a power of 2.

2005 China Team Selection Test, 1

Let $ b, m, n$ be positive integers such that $ b > 1$ and $ m \neq n.$ Prove that if $ b^m \minus{} 1$ and $ b^n \minus{} 1$ have the same prime divisors, then $ b \plus{} 1$ is a power of 2.

2024 Bangladesh Mathematical Olympiad, P8

Let $k$ be a positive integer. Show that there exist infinitely many positive integers $n$ such that $\frac{n^n-1}{n-1}$ has at least $k$ distinct prime divisors. [i]Proposed by Adnan Sadik[/i]

2000 Kazakhstan National Olympiad, 5

Let the number $ p $ be a prime divisor of the number $ 2 ^ {2 ^ k} + 1 $. Prove that $ p-1 $ is divisible by $ 2 ^ {k + 1} $.

2021 Greece JBMO TST, 2

Anna and Basilis play a game writing numbers on a board as follows: The two players play in turns and if in the board is written the positive integer $n$, the player whose turn is chooses a prime divisor $p$ of $n$ and writes the numbers $n+p$. In the board, is written at the start number $2$ and Anna plays first. The game is won by whom who shall be first able to write a number bigger or equal to $31$. Find who player has a winning strategy, that is who may writing the appropriate numbers may win the game no matter how the other player plays.

2014 Contests, 3

Prove that there exist infinitely many positive integers $n$ such that the largest prime divisor of $n^4 + n^2 + 1$ is equal to the largest prime divisor of $(n+1)^4 + (n+1)^2 +1$.