This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 48

2015 Balkan MO Shortlist, N3

Let $a$ be a positive integer. For all positive integer n, we define $ a_n=1+a+a^2+\ldots+a^{n-1}. $ Let $s,t$ be two different positive integers with the following property: If $p$ is prime divisor of $s-t$, then $p$ divides $a-1$. Prove that number $\frac{a_{s}-a_{t}}{s-t}$ is an integer. (FYROM)

2008 IMO Shortlist, 6

Prove that there are infinitely many positive integers $ n$ such that $ n^{2} \plus{} 1$ has a prime divisor greater than $ 2n \plus{} \sqrt {2n}$. [i]Author: Kestutis Cesnavicius, Lithuania[/i]

2008 IMO, 3

Prove that there are infinitely many positive integers $ n$ such that $ n^{2} \plus{} 1$ has a prime divisor greater than $ 2n \plus{} \sqrt {2n}$. [i]Author: Kestutis Cesnavicius, Lithuania[/i]

2024 Bulgarian Autumn Math Competition, 10.3

Find all polynomials $P$ with integer coefficients, for which there exists a number $N$, such that for every natural number $n \geq N$, all prime divisors of $n+2^{\lfloor \sqrt{n} \rfloor}$ are also divisors of $P(n)$.

2023 Romania EGMO TST, P2

Let $ b, m, n$ be positive integers such that $ b > 1$ and $ m \neq n.$ Prove that if $ b^m \minus{} 1$ and $ b^n \minus{} 1$ have the same prime divisors, then $ b \plus{} 1$ is a power of 2.

2022 Macedonian Mathematical Olympiad, Problem 3

The sequence $(a_n)_{n \ge 1}^\infty$ is given by: $a_1=2$ and $a_{n+1}=a_n^2+a_n$ for all $n \ge 1$. For an integer $m \ge 2$, $L(m)$ denotes the greatest prime divisor of $m$. Prove that there exists some $k$, for which $L(a_k) > 1000^{1000}$. [i]Proposed by Nikola Velov[/i]

2015 IFYM, Sozopol, 5

Does there exist a natural number $n$ with exactly 3 different prime divisors $p$, $q$, and $r$, so that $p-1\mid n$, $qr-1\mid n$, $q-1\nmid n$, $r-1\nmid n$, and $3\nmid q+r$?

2016 Argentina National Olympiad, 5

Let $a$ and $b$ be rational numbers such that $a+b=a^2+b^2$ . Suppose the common value $s=a+b=a^2+b^2$ is not an integer, and let's write it as an irreducible fraction: $s=\frac{m}{n}$. Let $p$ be the smallest prime divisor of $n$. Find the minimum value of $p$.

2009 Bundeswettbewerb Mathematik, 2

Let $n$ be an integer that is greater than $1$. Prove that the following two statements are equivalent: (A) There are positive integers $a, b$ and $c$ that are not greater than $n$ and for which that polynomial $ax^2 + bx + c$ has two different real roots $x_1$ and $x_2$ with $| x_2- x_1 | \le \frac{1}{n}$ (B) The number $n$ has at least two different prime divisors.

2021 Greece Junior Math Olympiad, 2

Anna and Basilis play a game writing numbers on a board as follows: The two players play in turns and if in the board is written the positive integer $n$, the player whose turn is chooses a prime divisor $p$ of $n$ and writes the numbers $n+p$. In the board, is written at the start number $2$ and Anna plays first. The game is won by whom who shall be first able to write a number bigger or equal to $31$. Find who player has a winning strategy, that is who may writing the appropriate numbers may win the game no matter how the other player plays.

1997 IMO Shortlist, 14

Let $ b, m, n$ be positive integers such that $ b > 1$ and $ m \neq n.$ Prove that if $ b^m \minus{} 1$ and $ b^n \minus{} 1$ have the same prime divisors, then $ b \plus{} 1$ is a power of 2.

2013 IMO Shortlist, N3

Prove that there exist infinitely many positive integers $n$ such that the largest prime divisor of $n^4 + n^2 + 1$ is equal to the largest prime divisor of $(n+1)^4 + (n+1)^2 +1$.

2018 Saudi Arabia IMO TST, 1

Denote $S$ as the set of prime divisors of all integers of form $2^{n^2+1} - 3^n, n \in Z^+$. Prove that $S$ and $P-S$ both contain infinitely many elements (where $P$ is set of prime numbers).

2014 Taiwan TST Round 1, 5

Prove that there exist infinitely many positive integers $n$ such that the largest prime divisor of $n^4 + n^2 + 1$ is equal to the largest prime divisor of $(n+1)^4 + (n+1)^2 +1$.

VMEO II 2005, 3

Given positive integers $a_1$, $a_2$, $...$, $a_m$ ($m \ge 1$). Consider the sequence $\{u_n\}_{n=1}^{\infty}$, with $$u_n = a_1^n + a_2^n + ... + a_m^n.$$ We know that this sequence has a finite number of prime divisors. Prove that $a_1 = a_2 = ...= a_m$.

2005 China Team Selection Test, 1

Let $ b, m, n$ be positive integers such that $ b > 1$ and $ m \neq n.$ Prove that if $ b^m \minus{} 1$ and $ b^n \minus{} 1$ have the same prime divisors, then $ b \plus{} 1$ is a power of 2.

2015 Peru IMO TST, 16

Let $c \ge 1$ be an integer. Define a sequence of positive integers by $a_1 = c$ and \[a_{n+1}=a_n^3-4c\cdot a_n^2+5c^2\cdot a_n+c\] for all $n\ge 1$. Prove that for each integer $n \ge 2$ there exists a prime number $p$ dividing $a_n$ but none of the numbers $a_1 , \ldots , a_{n -1}$ . [i]Proposed by Austria[/i]

1995 Brazil National Olympiad, 3

For any positive integer $ n>1$, let $ P\left(n\right)$ denote the largest prime divisor of $ n$. Prove that there exist infinitely many positive integers $ n$ for which \[ P\left(n\right)<P\left(n\plus{}1\right)<P\left(n\plus{}2\right).\]

2015 Latvia Baltic Way TST, 15

Let $w (n)$ denote the number of different prime numbers by which $n$ is divisible. Prove that there are infinitely many natural numbers $n$ such that $w(n) < w(n + 1) < w(n + 2)$.

Russian TST 2014, P2

Prove that there exist infinitely many positive integers $n$ such that the largest prime divisor of $n^4 + n^2 + 1$ is equal to the largest prime divisor of $(n+1)^4 + (n+1)^2 +1$.

2007 Indonesia TST, 2

Let $a > 3$ be an odd integer. Show that for every positive integer $n$ the number $a^{2^n}- 1$ has at least $n + 1$ distinct prime divisors.

2000 Kazakhstan National Olympiad, 5

Let the number $ p $ be a prime divisor of the number $ 2 ^ {2 ^ k} + 1 $. Prove that $ p-1 $ is divisible by $ 2 ^ {k + 1} $.

1986 Polish MO Finals, 3

$p$ is a prime and $m$ is a non-negative integer $< p-1$. Show that $ \sum_{j=1}^p j^m$ is divisible by $p$.

2007 Indonesia TST, 2

Let $a > 3$ be an odd integer. Show that for every positive integer $n$ the number $a^{2^n}- 1$ has at least $n + 1$ distinct prime divisors.

2014 Brazil Team Selection Test, 2

Prove that there exist infinitely many positive integers $n$ such that the largest prime divisor of $n^4 + n^2 + 1$ is equal to the largest prime divisor of $(n+1)^4 + (n+1)^2 +1$.