This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 41

2015 China Team Selection Test, 2

Let $X$ be a non-empty and finite set, $A_1,...,A_k$ $k$ subsets of $X$, satisying: (1) $|A_i|\leq 3,i=1,2,...,k$ (2) Any element of $X$ is an element of at least $4$ sets among $A_1,....,A_k$. Show that one can select $[\frac{3k}{7}] $ sets from $A_1,...,A_k$ such that their union is $X$.

1992 China Team Selection Test, 1

16 students took part in a competition. All problems were multiple choice style. Each problem had four choices. It was said that any two students had at most one answer in common, find the maximum number of problems.

2016 Serbia National Math Olympiad, 5

There are $2n-1$ twoelement subsets of set $1,2,...,n$. Prove that one can choose $n$ out of these such that their union contains no more than $\frac{2}{3}n+1$ elements.

2009 Brazil Team Selection Test, 4

Let $ S \equal{} \{x_1, x_2, \ldots, x_{k \plus{} l}\}$ be a $ (k \plus{} l)$-element set of real numbers contained in the interval $ [0, 1]$; $ k$ and $ l$ are positive integers. A $ k$-element subset $ A\subset S$ is called [i]nice[/i] if \[ \left |\frac {1}{k}\sum_{x_i\in A} x_i \minus{} \frac {1}{l}\sum_{x_j\in S\setminus A} x_j\right |\le \frac {k \plus{} l}{2kl}\] Prove that the number of nice subsets is at least $ \dfrac{2}{k \plus{} l}\dbinom{k \plus{} l}{k}$. [i]Proposed by Andrey Badzyan, Russia[/i]

2009 Belarus Team Selection Test, 3

Let $ S \equal{} \{x_1, x_2, \ldots, x_{k \plus{} l}\}$ be a $ (k \plus{} l)$-element set of real numbers contained in the interval $ [0, 1]$; $ k$ and $ l$ are positive integers. A $ k$-element subset $ A\subset S$ is called [i]nice[/i] if \[ \left |\frac {1}{k}\sum_{x_i\in A} x_i \minus{} \frac {1}{l}\sum_{x_j\in S\setminus A} x_j\right |\le \frac {k \plus{} l}{2kl}\] Prove that the number of nice subsets is at least $ \dfrac{2}{k \plus{} l}\dbinom{k \plus{} l}{k}$. [i]Proposed by Andrey Badzyan, Russia[/i]

1987 IMO Longlists, 53

Prove that there exists a four-coloring of the set $M = \{1, 2, \cdots, 1987\}$ such that any arithmetic progression with $10$ terms in the set $M$ is not monochromatic. [b][i]Alternative formulation[/i][/b] Let $M = \{1, 2, \cdots, 1987\}$. Prove that there is a function $f : M \to \{1, 2, 3, 4\}$ that is not constant on every set of $10$ terms from $M$ that form an arithmetic progression. [i]Proposed by Romania[/i]

1992 China Team Selection Test, 1

16 students took part in a competition. All problems were multiple choice style. Each problem had four choices. It was said that any two students had at most one answer in common, find the maximum number of problems.

2001 USA Team Selection Test, 3

For a set $S$, let $|S|$ denote the number of elements in $S$. Let $A$ be a set of positive integers with $|A| = 2001$. Prove that there exists a set $B$ such that (i) $B \subseteq A$; (ii) $|B| \ge 668$; (iii) for any $u, v \in B$ (not necessarily distinct), $u+v \not\in B$.

2016 Azerbaijan BMO TST, 2

There are $100$ students who praticipate at exam.Also there are $25$ members of jury.Each student is checked by one jury.Known that every student likes $10$ jury $a)$ Prove that we can select $7$ jury such that any student likes at least one jury. $b)$ Prove that we can make this every student will be checked by the jury that he likes and every jury will check at most $10$ students.

2006 All-Russian Olympiad, 8

At a tourist camp, each person has at least $50$ and at most $100$ friends among the other persons at the camp. Show that one can hand out a t-shirt to every person such that the t-shirts have (at most) $1331$ different colors, and any person has $20$ friends whose t-shirts all have pairwisely different colors.

2003 Kurschak Competition, 3

Prove that the following inequality holds with the exception of finitely many positive integers $n$: \[\sum_{i=1}^n\sum_{j=1}^n gcd(i,j)>4n^2.\]

2012 USAMO, 2

A circle is divided into $432$ congruent arcs by $432$ points. The points are colored in four colors such that some $108$ points are colored Red, some $108$ points are colored Green, some $108$ points are colored Blue, and the remaining $108$ points are colored Yellow. Prove that one can choose three points of each color in such a way that the four triangles formed by the chosen points of the same color are congruent.

2023 China Team Selection Test, P11

Let $n\in\mathbb N_+.$ For $1\leq i,j,k\leq n,a_{ijk}\in\{ -1,1\} .$ Prove that: $\exists x_1,x_2,\cdots ,x_n,y_1,y_2,\cdots ,y_n,z_1,z_2,\cdots ,z_n\in \{-1,1\} ,$ satisfy $$\left| \sum\limits_{i=1}^n\sum\limits_{j=1}^n\sum\limits_{k=1}^na_{ijk}x_iy_jz_k\right| >\frac {n^2}3.$$ [i]Created by Yu Deng[/i]

2002 IMC, 8

200 students participated in a math contest. They had 6 problems to solve. Each problem was correctly solved by at least 120 participants. Prove that there must be 2 participants such that every problem was solved by at least one of these two students.

2016 International Zhautykov Olympiad, 3

There are $60$ towns in $Graphland$ every two countries of which are connected by only a directed way. Prove that we can color four towns to red and four towns to green such that every way between green and red towns are directed from red to green

2007 Germany Team Selection Test, 2

Let $ S$ be a finite set of points in the plane such that no three of them are on a line. For each convex polygon $ P$ whose vertices are in $ S$, let $ a(P)$ be the number of vertices of $ P$, and let $ b(P)$ be the number of points of $ S$ which are outside $ P$. A line segment, a point, and the empty set are considered as convex polygons of $ 2$, $ 1$, and $ 0$ vertices respectively. Prove that for every real number $ x$ \[\sum_{P}{x^{a(P)}(1 \minus{} x)^{b(P)}} \equal{} 1,\] where the sum is taken over all convex polygons with vertices in $ S$. [i]Alternative formulation[/i]: Let $ M$ be a finite point set in the plane and no three points are collinear. A subset $ A$ of $ M$ will be called round if its elements is the set of vertices of a convex $ A \minus{}$gon $ V(A).$ For each round subset let $ r(A)$ be the number of points from $ M$ which are exterior from the convex $ A \minus{}$gon $ V(A).$ Subsets with $ 0,1$ and 2 elements are always round, its corresponding polygons are the empty set, a point or a segment, respectively (for which all other points that are not vertices of the polygon are exterior). For each round subset $ A$ of $ M$ construct the polynomial \[ P_A(x) \equal{} x^{|A|}(1 \minus{} x)^{r(A)}. \] Show that the sum of polynomials for all round subsets is exactly the polynomial $ P(x) \equal{} 1.$ [i]Proposed by Federico Ardila, Colombia[/i]

2011 Romania Team Selection Test, 3

Given a set $L$ of lines in general position in the plane (no two lines in $L$ are parallel, and no three lines are concurrent) and another line $\ell$, show that the total number of edges of all faces in the corresponding arrangement, intersected by $\ell$, is at most $6|L|$. [i]Chazelle et al., Edelsbrunner et al.[/i]

2015 Romania Team Selection Tests, 3

Let $n$ be a positive integer . If $\sigma$ is a permutation of the first $n$ positive integers , let $S(\sigma)$ be the set of all distinct sums of the form $\sum_{i=k}^{l} \sigma(i)$ where $1 \leq k \leq l \leq n$ . [b](a)[/b] Exhibit a permutation $\sigma$ of the first $n$ positive integers such that $|S(\sigma)|\geq \left \lfloor{\frac{(n+1)^2}{4}}\right \rfloor $. [b](b)[/b] Show that $|S(\sigma)|>\frac{n\sqrt{n}}{4\sqrt{2}}$ for all permutations $\sigma$ of the first $n$ positive integers .

2017 Czech And Slovak Olympiad III A, 4

For each sequence of $n$ zeros and $n$ units, we assign a number that is a number sections of the same digits in it. (For example, sequence $00111001$ has $4$ such sections $00, 111,00, 1$.) For a given $n$ we sum up all the numbers assigned to each such sequence. Prove that the sum total is equal to $(n+1){2n \choose n} $

1996 All-Russian Olympiad, 4

In the Duma there are 1600 delegates, who have formed 16000 committees of 80 persons each. Prove that one can find two committees having no fewer than four common members. [i]A. Skopenkov[/i]

2009 Germany Team Selection Test, 3

Let $ S \equal{} \{x_1, x_2, \ldots, x_{k \plus{} l}\}$ be a $ (k \plus{} l)$-element set of real numbers contained in the interval $ [0, 1]$; $ k$ and $ l$ are positive integers. A $ k$-element subset $ A\subset S$ is called [i]nice[/i] if \[ \left |\frac {1}{k}\sum_{x_i\in A} x_i \minus{} \frac {1}{l}\sum_{x_j\in S\setminus A} x_j\right |\le \frac {k \plus{} l}{2kl}\] Prove that the number of nice subsets is at least $ \dfrac{2}{k \plus{} l}\dbinom{k \plus{} l}{k}$. [i]Proposed by Andrey Badzyan, Russia[/i]

2007 India IMO Training Camp, 2

Let $ S$ be a finite set of points in the plane such that no three of them are on a line. For each convex polygon $ P$ whose vertices are in $ S$, let $ a(P)$ be the number of vertices of $ P$, and let $ b(P)$ be the number of points of $ S$ which are outside $ P$. A line segment, a point, and the empty set are considered as convex polygons of $ 2$, $ 1$, and $ 0$ vertices respectively. Prove that for every real number $ x$ \[\sum_{P}{x^{a(P)}(1 \minus{} x)^{b(P)}} \equal{} 1,\] where the sum is taken over all convex polygons with vertices in $ S$. [i]Alternative formulation[/i]: Let $ M$ be a finite point set in the plane and no three points are collinear. A subset $ A$ of $ M$ will be called round if its elements is the set of vertices of a convex $ A \minus{}$gon $ V(A).$ For each round subset let $ r(A)$ be the number of points from $ M$ which are exterior from the convex $ A \minus{}$gon $ V(A).$ Subsets with $ 0,1$ and 2 elements are always round, its corresponding polygons are the empty set, a point or a segment, respectively (for which all other points that are not vertices of the polygon are exterior). For each round subset $ A$ of $ M$ construct the polynomial \[ P_A(x) \equal{} x^{|A|}(1 \minus{} x)^{r(A)}. \] Show that the sum of polynomials for all round subsets is exactly the polynomial $ P(x) \equal{} 1.$ [i]Proposed by Federico Ardila, Colombia[/i]

2007 Germany Team Selection Test, 2

Let $ S$ be a finite set of points in the plane such that no three of them are on a line. For each convex polygon $ P$ whose vertices are in $ S$, let $ a(P)$ be the number of vertices of $ P$, and let $ b(P)$ be the number of points of $ S$ which are outside $ P$. A line segment, a point, and the empty set are considered as convex polygons of $ 2$, $ 1$, and $ 0$ vertices respectively. Prove that for every real number $ x$ \[\sum_{P}{x^{a(P)}(1 \minus{} x)^{b(P)}} \equal{} 1,\] where the sum is taken over all convex polygons with vertices in $ S$. [i]Alternative formulation[/i]: Let $ M$ be a finite point set in the plane and no three points are collinear. A subset $ A$ of $ M$ will be called round if its elements is the set of vertices of a convex $ A \minus{}$gon $ V(A).$ For each round subset let $ r(A)$ be the number of points from $ M$ which are exterior from the convex $ A \minus{}$gon $ V(A).$ Subsets with $ 0,1$ and 2 elements are always round, its corresponding polygons are the empty set, a point or a segment, respectively (for which all other points that are not vertices of the polygon are exterior). For each round subset $ A$ of $ M$ construct the polynomial \[ P_A(x) \equal{} x^{|A|}(1 \minus{} x)^{r(A)}. \] Show that the sum of polynomials for all round subsets is exactly the polynomial $ P(x) \equal{} 1.$ [i]Proposed by Federico Ardila, Colombia[/i]

2007 India IMO Training Camp, 2

Let $ S$ be a finite set of points in the plane such that no three of them are on a line. For each convex polygon $ P$ whose vertices are in $ S$, let $ a(P)$ be the number of vertices of $ P$, and let $ b(P)$ be the number of points of $ S$ which are outside $ P$. A line segment, a point, and the empty set are considered as convex polygons of $ 2$, $ 1$, and $ 0$ vertices respectively. Prove that for every real number $ x$ \[\sum_{P}{x^{a(P)}(1 \minus{} x)^{b(P)}} \equal{} 1,\] where the sum is taken over all convex polygons with vertices in $ S$. [i]Alternative formulation[/i]: Let $ M$ be a finite point set in the plane and no three points are collinear. A subset $ A$ of $ M$ will be called round if its elements is the set of vertices of a convex $ A \minus{}$gon $ V(A).$ For each round subset let $ r(A)$ be the number of points from $ M$ which are exterior from the convex $ A \minus{}$gon $ V(A).$ Subsets with $ 0,1$ and 2 elements are always round, its corresponding polygons are the empty set, a point or a segment, respectively (for which all other points that are not vertices of the polygon are exterior). For each round subset $ A$ of $ M$ construct the polynomial \[ P_A(x) \equal{} x^{|A|}(1 \minus{} x)^{r(A)}. \] Show that the sum of polynomials for all round subsets is exactly the polynomial $ P(x) \equal{} 1.$ [i]Proposed by Federico Ardila, Colombia[/i]

1987 IMO Shortlist, 17

Prove that there exists a four-coloring of the set $M = \{1, 2, \cdots, 1987\}$ such that any arithmetic progression with $10$ terms in the set $M$ is not monochromatic. [b][i]Alternative formulation[/i][/b] Let $M = \{1, 2, \cdots, 1987\}$. Prove that there is a function $f : M \to \{1, 2, 3, 4\}$ that is not constant on every set of $10$ terms from $M$ that form an arithmetic progression. [i]Proposed by Romania[/i]