This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1111

2012 NIMO Problems, 3

In chess, there are two types of minor pieces, the bishop and the knight. A bishop may move along a diagonal, as long as there are no pieces obstructing its path. A knight may jump to any lattice square $\sqrt{5}$ away as long as it isn't occupied. One day, a bishop and a knight were on squares in the same row of an infinite chessboard, when a huge meteor storm occurred, placing a meteor in each square on the chessboard independently and randomly with probability $p$. Neither the bishop nor the knight were hit, but their movement may have been obstructed by the meteors. The value of $p$ that would make the expected number of valid squares that the bishop can move to and the number of squares that the knight can move to equal can be expressed as $\frac{a}{b}$ for relatively prime positive integers $a, b$. Compute $100a + b$. [i]Proposed by Lewis Chen[/i]

1990 Canada National Olympiad, 2

Tags: probability
$\frac{n(n + 1)}{2}$ distinct numbers are arranged at random into $n$ rows. The first row has $1$ number, the second has $2$ numbers, the third has $3$ numbers and so on. Find the probability that the largest number in each row is smaller than the largest number in each row with more numbers.

1995 Polish MO Finals, 2

An urn contains $n$ balls labeled $1, 2, ... , n$. We draw the balls out one by one (without replacing them) until we obtain a ball whose number is divisible by $k$. Find all $k$ such that the expected number of balls removed is $k$.

2002 AMC 8, 12

Tags: probability
A board game spinner is divided into three regions labeled $A$, $B$ and $C$. The probability of the arrow stopping on region $A$ is $\frac{1}{3}$ and on region $B$ is $\frac{1}{2}$. The probability of the arrow stopping on region $C$ is: $\text{(A)}\ \frac{1}{12} \qquad \text{(B)}\ \frac{1}{6} \qquad \text{(C)}\ \frac{1}{5} \qquad \text{(D)}\ \frac{1}{3} \qquad \text{(E)}\ \frac{2}{5}$

2005 National Olympiad First Round, 12

Tags: probability
Ali and Veli goes to hunting. The probability that each will successfully hit a duck is $1/2$ on any given shot. During the hunt, Ali shoots $12$ times, and Veli shoots $13$ times. What is the probability that Veli hits more ducks than Ali? $ \textbf{(A)}\ \dfrac 12 \qquad\textbf{(B)}\ \dfrac{13}{25} \qquad\textbf{(C)}\ \dfrac{13}{24} \qquad\textbf{(D)}\ \dfrac{7}{13} \qquad\textbf{(E)}\ \dfrac{3}{4} $

2007 India IMO Training Camp, 2

Let $ S$ be a finite set of points in the plane such that no three of them are on a line. For each convex polygon $ P$ whose vertices are in $ S$, let $ a(P)$ be the number of vertices of $ P$, and let $ b(P)$ be the number of points of $ S$ which are outside $ P$. A line segment, a point, and the empty set are considered as convex polygons of $ 2$, $ 1$, and $ 0$ vertices respectively. Prove that for every real number $ x$ \[\sum_{P}{x^{a(P)}(1 \minus{} x)^{b(P)}} \equal{} 1,\] where the sum is taken over all convex polygons with vertices in $ S$. [i]Alternative formulation[/i]: Let $ M$ be a finite point set in the plane and no three points are collinear. A subset $ A$ of $ M$ will be called round if its elements is the set of vertices of a convex $ A \minus{}$gon $ V(A).$ For each round subset let $ r(A)$ be the number of points from $ M$ which are exterior from the convex $ A \minus{}$gon $ V(A).$ Subsets with $ 0,1$ and 2 elements are always round, its corresponding polygons are the empty set, a point or a segment, respectively (for which all other points that are not vertices of the polygon are exterior). For each round subset $ A$ of $ M$ construct the polynomial \[ P_A(x) \equal{} x^{|A|}(1 \minus{} x)^{r(A)}. \] Show that the sum of polynomials for all round subsets is exactly the polynomial $ P(x) \equal{} 1.$ [i]Proposed by Federico Ardila, Colombia[/i]

2001 AMC 10, 23

A box contains exactly five chips, three red and two white. Chips are randomly removed one at a time without replacement until all the red chips are drawn or all the white chips are drawn. What is the probability that the last chip drawn is white? $ \displaystyle \textbf{(A)} \ \frac {3}{10} \qquad \textbf{(B)} \ \frac {2}{5} \qquad \textbf{(C)} \ \frac {1}{2} \qquad \textbf{(D)} \ \frac {3}{5} \qquad \textbf{(E)} \ \frac {7}{10}$

1991 AIME Problems, 10

Two three-letter strings, $aaa$ and $bbb$, are transmitted electronically. Each string is sent letter by letter. Due to faulty equipment, each of the six letters has a 1/3 chance of being received incorrectly, as an $a$ when it should have been a $b$, or as a $b$ when it should be an $a$. However, whether a given letter is received correctly or incorrectly is independent of the reception of any other letter. Let $S_a$ be the three-letter string received when $aaa$ is transmitted and let $S_b$ be the three-letter string received when $bbb$ is transmitted. Let $p$ be the probability that $S_a$ comes before $S_b$ in alphabetical order. When $p$ is written as a fraction in lowest terms, what is its numerator?

2008 AMC 10, 16

Tags: probability
Two fair coins are to be tossed once. For each head that results, one fair die is to be rolled. What is the probability that the sum of the die rolls is odd? (Note that if no die is rolled, their sum is $ 0$.) $ \textbf{(A)}\ \frac{3}{8} \qquad \textbf{(B)}\ \frac{1}{2} \qquad \textbf{(C)}\ \frac{43}{72} \qquad \textbf{(D)}\ \frac{5}{8} \qquad \textbf{(E)}\ \frac{2}{3}$

1980 AMC 12/AHSME, 20

A box contains 2 pennies, 4 nickels, and 6 dimes. Six coins are drawn without replacement, with each coin having an equal probability of being chosen. What is the probability that the value of coins drawn is at least 50 cents? $\text{(A)} \ \frac{37}{924} \qquad \text{(B)} \ \frac{91}{924} \qquad \text{(C)} \ \frac{127}{924} \qquad \text{(D)} \ \frac{132}{924} \qquad \text{(E)} \ \text{none of these}$

KoMaL A Problems 2020/2021, A. 800

In a finite, simple, connected graph $G$ we play the following game: initially we color all the vertices with a different color. In each step we choose a vertex randomly (with uniform distribution), and then choose one of its neighbors randomly (also with uniform distribution), and color it to the the same color as the originally chosen vertex (if the two chosen vertices already have the same color, we do nothing). The game ends when all the vertices have the same color. Knowing graph $G$ find the probability for each vertex that the game ends with all vertices having the same color as the chosen vertex.

2012 NIMO Summer Contest, 10

A [i]triangulation[/i] of a polygon is a subdivision of the polygon into triangles meeting edge to edge, with the property that the set of triangle vertices coincides with the set of vertices of the polygon. Adam randomly selects a triangulation of a regular $180$-gon. Then, Bob selects one of the $178$ triangles in this triangulation. The expected number of $1^\circ$ angles in this triangle can be expressed as $\frac{a}{b}$, where $a$ and $b$ are relatively prime positive integers. Compute $100a + b$. [i]Proposed by Lewis Chen[/i]

2004 AMC 10, 23

Each face of a cube is painted either red or blue, each with probability $ 1/2$. The color of each face is determined independently. What is the probability that the painted cube can be placed on a horizontal surface so that the four vertical faces are all the same color? $ \textbf{(A)}\ \frac14 \qquad \textbf{(B)}\ \frac{5}{16} \qquad \textbf{(C)}\ \frac38 \qquad \textbf{(D)}\ \frac{7}{16} \qquad \textbf{(E)}\ \frac12$

2011 AIME Problems, 6

Tags: probability
Define an ordered quadruple of integers $(a, b, c, d)$ as interesting if $1 \le a<b<c<d \le 10$, and $a+d>b+c$. How many ordered quadruples are there?

2010 AMC 12/AHSME, 19

Each of 2010 boxes in a line contains a single red marble, and for $ 1 \le k \le 2010$, the box in the $ kth$ position also contains $ k$ white marbles. Isabella begins at the first box and successively draws a single marble at random from each box, in order. She stops when she first draws a red marble. Let $ P(n)$ be the probability that Isabella stops after drawing exactly $ n$ marbles. What is the smallest value of $ n$ for which $ P(n) < \frac {1}{2010}$? $ \textbf{(A)}\ 45 \qquad \textbf{(B)}\ 63 \qquad \textbf{(C)}\ 64 \qquad \textbf{(D)}\ 201 \qquad \textbf{(E)}\ 1005$

2016 PUMaC Combinatorics B, 6

A knight is placed at the origin of the Cartesian plane. Each turn, the knight moves in an chess $\text{L}$-shape ($2$ units parallel to one axis and $1$ unit parallel to the other) to one of eight possible location, chosen at random. After $2016$ such turns, what is the expected value of the square of the distance of the knight from the origin?

2006 District Olympiad, 3

Let $\{x_n\}_{n\geq 0}$ be a sequence of real numbers which satisfy \[ (x_{n+1} - x_n)(x_{n+1}+x_n+1) \leq 0, \quad n\geq 0. \] a) Prove that the sequence is bounded; b) Is it possible that the sequence is not convergent?

2009 Princeton University Math Competition, 1

Tags: probability
Three people, John, Macky, and Rik, play a game of passing a basketball from one to another. Find the number of ways of passing the ball starting with Macky and reaching Macky again at the end of the seventh pass.

1991 Turkey Team Selection Test, 2

$p$ passengers get on a train with $n$ wagons. Find the probability of being at least one passenger at each wagon.

2024 AMC 12/AHSME, 25

Tags: probability
Pablo will decorate each of $6$ identical white balls with either a striped or a dotted pattern, using either red or blue paint. He will decide on the color and pattern for each ball by flipping a fair coin for each of the $12$ decisions he must make. After the paint dries, he will place the $6$ balls in an urn. Frida will randomly select one ball from the urn and note its color and pattern. The events "the ball Frida selects is red" and "the ball Frida selects is striped" may or may not be independent, depending on the outcome of Pablo's coin flips. The probability that these two events are independent can be written as $\frac mn,$ where $m$ and $n$ are relatively prime positive integers. What is $m?$ (Recall that two events $A$ and $B$ are independent if $P(A \text{ and }B) = P(A) \cdot P(B).$) $\textbf{(A) } 243 \qquad \textbf{(B) } 245 \qquad \textbf{(C) } 247 \qquad \textbf{(D) } 249\qquad \textbf{(E) } 251$

2006 Princeton University Math Competition, 7

Tags: probability
Aaron has a coin that is slightly unbalanced. The odds of getting heads are $60\%$. What are the odds that if he flips it endlessly, at some point during his flipping he has a total of three more tails than heads?

2008 Purple Comet Problems, 13

If you roll six fair dice, let $\mathsf{ p}$ be the probability that exactly five different numbers appear on the upper faces of the six dice. If $\mathsf{p} = \frac{m}{n}$ where $ m $ and $n$ are relatively prime positive integers, find $m+n.$

2002 National Olympiad First Round, 15

Tags: probability
There are $10$ seats in each of $10$ rows of a theatre and all the seats are numbered. What is the probablity that two friends buying tickets independently will occupy adjacent seats? $ \textbf{a)}\ \dfrac{1}{55} \qquad\textbf{b)}\ \dfrac{1}{50} \qquad\textbf{c)}\ \dfrac{2}{55} \qquad\textbf{d)}\ \dfrac{1}{25} \qquad\textbf{e)}\ \text{None of above} $

2013 Purple Comet Problems, 18

Six children stand in a line outside their classroom. When they enter the classroom, they sit in a circle in random order. There are relatively prime positive integers $m$ and $n$ so that $\tfrac{m}{n}$ is the probability that no two children who stood next to each other in the line end up sitting next to each other in the circle. Find $m + n$.

2007 AMC 12/AHSME, 11

A finite sequence of three-digit integers has the property that the tens and units digits of each term are, respectively, the hundreds and tens digits of the next term, and the tens and units digits of the last term are, respectively, the hundreds and tens digits of the first term. For example, such a sequence might begin with the terms $ 247,$ $ 275,$ and $ 756$ and end with the term $ 824.$ Let $ \mathcal{S}$ be the sum of all the terms in the sequence. What is the largest prime factor that always divides $ \mathcal{S}?$ $ \textbf{(A)}\ 3 \qquad \textbf{(B)}\ 7 \qquad \textbf{(C)}\ 13 \qquad \textbf{(D)}\ 37 \qquad \textbf{(E)}\ 43$