Found problems: 1111
1982 IMO Shortlist, 10
A box contains $p$ white balls and $q$ black balls. Beside the box there is a pile of black balls. Two balls are taken out of the box. If they have the same color, a black ball from the pile is put into the box. If they have different colors, the white ball is put back into the box. This procedure is repeated until the last two balls are removed from the box and one last ball is put in. What is the probability that this last ball is white?
2003 China National Olympiad, 2
Ten people apply for a job. The manager decides to interview the candidates one by one according to the following conditions:
i) the first three candidates will not be employed;
ii) from the fourth candidates onwards, if a candidate's comptence surpasses the competence of all those who preceded him, then that candidate is employed;
iii) if the first nine candidates are not employed, then the tenth candidate will be employed.
We assume that none of the $10$ applicants have the same competence, and these competences can be ranked from the first to tenth. Let $P_k$ represent the probability that the $k$th-ranked applicant in competence is employed. Prove that:
i) $P_1>P_2>\ldots>P_8=P_9=P_{10}$;
ii) $P_1+P_2+P_3>0.7$
iii) $P_8+P_9+P_{10}\le 0.1$.
[i]Su Chun[/i]
2006 AMC 10, 13
A player pays $ \$ 5$ to play a game. A die is rolled. If the number on the die is odd, the game is lost. If the number on the die is even, the die is rolled again. In this case the player wins if the second number matches the first and loses otherwise. How much should the player win if the game is fair? (In a fair game the probability of winning times the amount won is what the player should pay.)
$ \textbf{(A) } \$ 12 \qquad \textbf{(B) } \$ 30 \qquad \textbf{(C) } \$ 50\qquad \textbf{(D) } \$ 60 \qquad \textbf{(E) } \$ 100$
1990 AMC 8, 14
A bag contains only blue balls and green balls. There are $6$ blue balls. If the probability of drawing a blue ball at random from this bag is $ \frac{1}{4} $, then the number of green balls in the bag is
$ \text{(A)}\ 12\qquad\text{(B)}\ 18\qquad\text{(C)}\ 24\qquad\text{(D)}\ 30\qquad\text{(E)}\ 36 $
2005 National High School Mathematics League, 14
Nine balls numbered $1,2,\cdots,9$ are put on nine poines that divide the circle into nine equal parts. The sum of absolute values of the difference between the number of two adjacent balls is $S$. Find the probablity of $S$ takes its minumum value.
Note: If one way of putting balls can be the same as another one by rotating or specular-reflecting, then they are considered the same way.
2006 Denmark MO - Mohr Contest, 3
A natural number $n$, which is at most $500$, has the property that when one chooses at at random among the numbers $1, 2, 3,...,499, 500$, then the probability is $\frac{1}{100}$ for $m$ to add up to $n$. Determine the largest possible value of $n$.
2012 AMC 12/AHSME, 11
Alex, Mel, and Chelsea play a game that has $6$ rounds. In each round there is a single winner, and the outcomes of the rounds are independent. For each round the probability that Alex wins is $\frac{1}{2}$, and Mel is twice as likely to win as Chelsea. What is the probability that Alex wins three rounds, Mel wins two rounds, and Chelsea wins one round?
$ \textbf{(A)}\ \frac{5}{72}\qquad\textbf{(B)}\ \frac{5}{36}\qquad\textbf{(C)}\ \frac{1}{6}\qquad\textbf{(D)}\ \frac{1}{3}\qquad\textbf{(E)}\ 1 $
2021 JHMT HS, 11
Carter and Vivian decide to spend their afternoon listing pairs of real numbers, $(a, b).$ Carter wants to find all $(a, b)$ such that $(a, b)$ lie within a circle of radius $6$ centered at $(6, 6).$ Vivian hates circles and would rather find all $(a, b)$ such that $a,$ $b,$ and $6$ can be the side lengths of a triangle. If Carter randomly chooses an $(a, b)$ that satisfies his conditions, then the probability that the pair also satisfies Vivian's conditions can be written in the form $\tfrac{p}{q} + \tfrac{r}{s\pi},$ where $p,$ $q,$ $r,$ and $s$ are positive integers, $p$ and $q$ are relatively prime, and $r$ and $s$ are relatively prime. Find $p + q + r + s.$
2014 Math Prize For Girls Problems, 3
Four different positive integers less than 10 are chosen randomly. What is the probability that their sum is odd?
2021 BMT, 4
Derek and Julia are two of 64 players at a casual basketball tournament. The players split up into 8 teams of 8 players at random. Each team then randomly selects 2 captains among their players. What is the probability that both Derek and Julia are captains?
2014 BMT Spring, 2
If I roll three fair $4$-sided dice, what is the probability that the sum of the resulting numbers is relatively prime to the product of the resulting numbers?
2008 Harvard-MIT Mathematics Tournament, 6
A Sudoku matrix is defined as a $ 9\times9$ array with entries from $ \{1, 2, \ldots , 9\}$ and with the constraint that each row, each column, and each of the nine $ 3 \times 3$ boxes that tile the array contains each digit from $ 1$ to $ 9$ exactly once. A Sudoku matrix is chosen at random (so that every Sudoku matrix has equal probability of being chosen). We know two of the squares in this matrix, as shown. What is the probability that the square marked by ? contains the digit $ 3$?
$ \setlength{\unitlength}{6mm} \begin{picture}(9,9)(0,0) \multiput(0,0)(1,0){10}{\line(0,1){9}} \multiput(0,0)(0,1){10}{\line(1,0){9}} \linethickness{1.2pt} \multiput(0,0)(3,0){4}{\line(0,1){9}} \multiput(0,0)(0,3){4}{\line(1,0){9}} \put(0,8){\makebox(1,1){1}} \put(1,7){\makebox(1,1){2}} \put(3,6){\makebox(1,1){?}} \end{picture}$
1998 AIME Problems, 4
Nine tiles are numbered $1, 2, 3, \ldots, 9,$ respectively. Each of three players randomly selects and keeps three of the tile, and sums those three values. The probability that all three players obtain an odd sum is $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$
2008 Indonesia TST, 4
There are $15$ people, including Petruk, Gareng, and Bagong, which will be partitioned into $6$ groups, randomly, that consists of $3, 3, 3, 2, 2$, and $2$ people (orders are ignored). Determine the probability that Petruk, Gareng, and Bagong are in a group.
1987 ITAMO, 6
There are three balls of distinct colors in a bag. We repeatedly draw out the balls one by one, the balls are put back into the bag after each drawing. What is the probability that, after $n$ drawings,
(a) exactly one color occured?
(b) exactly two oclors occured?
(c) all three colors occured?
2013 Princeton University Math Competition, 14
Shuffle a deck of $71$ playing cards which contains $6$ aces. Then turn up cards from the top until you see an ace. What is the average number of cards required to be turned up to find the first ace?
2010 Contests, A3
Suppose that the function $h:\mathbb{R}^2\to\mathbb{R}$ has continuous partial derivatives and satisfies the equation
\[h(x,y)=a\frac{\partial h}{\partial x}(x,y)+b\frac{\partial h}{\partial y}(x,y)\]
for some constants $a,b.$ Prove that if there is a constant $M$ such that $|h(x,y)|\le M$ for all $(x,y)$ in $\mathbb{R}^2,$ then $h$ is identically zero.
2014 NIMO Problems, 7
Find the sum of all integers $n$ with $2 \le n \le 999$ and the following property: if $x$ and $y$ are randomly selected without replacement from the set $\left\{ 1,2,\dots,n \right\}$, then $x+y$ is even with probability $p$, where $p$ is the square of a rational number.
[i]Proposed by Ivan Koswara[/i]
2017 AMC 10, 15
Chloé chooses a real number uniformly at random from the interval $[0, 2017]$. Independently, Laurent chooses a real number uniformly at random from the interval $[0,4034]$. What is the probability that Laurent's number is greater than Chloé's number?
$\textbf{(A)}~\frac12 \qquad
\textbf{(B)}~\frac23 \qquad
\textbf{(C)}~\frac34 \qquad
\textbf{(D)}~\frac56\qquad
\textbf{(E)}~\frac78$
2022 HMNT, 1
Alice and Bob are playing in an eight-player single-elimination rock-paper-scissors tournament. In the first round, all players are paired up randomly to play a match. Each round after that, the winners of the previous round are paired up randomly. After three rounds, the last remaining player is considered the champion. Ties are broken with a coin flip. Given that Alice always plays rock, Bob always plays paper, and everyone else always plays scissors, what is the probability that Alice is crowned champion? Note that rock beats scissors, scissors beats paper, and paper beats rock.
2014 Online Math Open Problems, 8
Let $a$ and $b$ be randomly selected three-digit integers and suppose $a > b$.
We say that $a$ is [i]clearly bigger[/i] than $b$ if each digit of $a$ is larger than the corresponding digit of $b$.
If the probability that $a$ is clearly bigger than $b$ is $\tfrac mn$, where $m$ and $n$ are relatively prime integers,
compute $m+n$.
[i]Proposed by Evan Chen[/i]
2021 AMC 10 Fall, 14
Una rolls $6$ standard $6$-sided dice simultaneously and calculates the product of the $6{ }$ numbers obtained. What is the probability that the product is divisible by $4?$
$\textbf{(A)}\: \frac34\qquad\textbf{(B)} \: \frac{57}{64}\qquad\textbf{(C)} \: \frac{59}{64}\qquad\textbf{(D)} \: \frac{187}{192}\qquad\textbf{(E)} \: \frac{63}{64}$
2013 Princeton University Math Competition, 10
On a plane, there are $7$ seats. Each is assigned to a passenger. The passengers walk on the plane one at a time. The first passenger sits in the wrong seat (someone else's). For all the following people, they either sit in their assigned seat, or if it is full, randomly pick another. You are the last person to board the plane. What is the probability that you sit in your own seat?
2000 Harvard-MIT Mathematics Tournament, 7
Suppose you are given a fair coin and a sheet of paper with the polynomial $x^m$ written on it. Now for each toss of the coin, if heads show up, you must erase the polynomial $x^r$ (where $r$ is going to change with time - initially it is $m$) written on the paper and replace it with $x^{r-1}$. If tails show up, replace it with $x^{r+1}$. What is the expected value of the polynomial I get after $m$ such tosses? (Note: this is a different concept from the most probable value)
2005 AMC 12/AHSME, 14
On a standard die one of the dots is removed at random with each dot equally likely to be chosen. The die is then rolled. What is the probability that the top face has an odd number of dots?
$ \textbf{(A)}\ \frac {5}{11} \qquad
\textbf{(B)} \ \frac {10}{21} \qquad
\textbf{(C)}\ \frac {1}{2} \qquad
\textbf{(D)} \ \frac {11}{21} \qquad
\textbf{(E)}\ \frac {6}{11}$