Found problems: 1111
2012 Online Math Open Problems, 43
An integer $x$ is selected at random between 1 and $2011!$ inclusive. The probability that $x^x - 1$ is divisible by $2011$ can be expressed in the form $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m$.
[i]Author: Alex Zhu[/i]
1999 AIME Problems, 10
Ten points in the plane are given, with no three collinear. Four distinct segments joining pairs of these points are chosen at random, all such segments being equally likely. The probability that some three of the segments form a triangle whose vertices are among the ten given points is $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$
2011 NIMO Summer Contest, 1
A jar contains 4 blue marbles, 3 green marbles, and 5 red marbles. If Helen reaches in the jar and selects a marble at random, then the probability that she selects a red marble can be expressed as $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
2012 Singapore MO Open, 3
For each $i=1,2,..N$, let $a_i,b_i,c_i$ be integers such that at least one of them is odd. Show that one can find integers $x,y,z$ such that $xa_i+yb_i+zc_i$ is odd for at least $\frac{4}{7}N$ different values of $i$.
2013 NIMO Problems, 1
Tim is participating in the following three math contests. On each contest his score is the number of correct answers.
$\bullet$ The Local Area Inspirational Math Exam consists of 15 problems.
$\bullet$ The Further Away Regional Math League has 10 problems.
$\bullet$ The Distance-Optimized Math Open has 50 problems.
For every positive integer $n$, Tim knows the answer to the $n$th problems on each contest (which are pairwise distinct), if they exist; however, these answers have been randomly permuted so that he does not know which answer corresponds to which contest. Unaware of the shuffling, he competes with his modified answers. Compute the expected value of the sum of his scores on all three contests.
[i]Proposed by Evan Chen[/i]
2014 Harvard-MIT Mathematics Tournament, 11
Two fair octahedral dice, each with the numbers $1$ through $8$ on their faces, are rolled. Let $N$ be the remainder when the product of the numbers showing on the two dice is divided by $8$. Find the expected value of $N$.
2011 AMC 12/AHSME, 10
A pair of standard 6-sided fair dice is rolled once. The sum of the numbers rolled determines the diameter of a circle. What is the probability that the numerical value of the area of the circle is less than the numerical value of the circle's circumference?
$ \textbf{(A)}\ \frac{1}{36} \qquad
\textbf{(B)}\ \frac{1}{12} \qquad
\textbf{(C)}\ \frac{1}{6} \qquad
\textbf{(D)}\ \frac{1}{4} \qquad
\textbf{(E)}\ \frac{5}{18}
$
1995 AMC 8, 20
Diana and Apollo each roll a standard die obtaining a number at random from $1$ to $6$. What is the probability that Diana's number is larger than Apollo's number?
$\text{(A)}\ \dfrac{1}{3} \qquad \text{(B)}\ \dfrac{5}{12} \qquad \text{(C)}\ \dfrac{4}{9} \qquad \text{(D)}\ \dfrac{17}{36} \qquad \text{(E)}\ \dfrac{1}{2}$
2018 PUMaC Live Round, 1.3
Let a sequence be defined as follows: $a_0=1$, and for $n>0$, $a_n$ is $\tfrac{1}{3}a_{n-1}$ and is $\tfrac{1}{9}a_{n-1}$ with probability $\tfrac{1}{2}$. If the expected value of $\textstyle\sum_{n=0}^{\infty}a_n$ can be expressed in simplest form as $\tfrac{p}{q}$, what is $p+q$?
1963 Miklós Schweitzer, 10
Select $ n$ points on a circle independently with uniform distribution. Let $ P_n$ be the probability that the center of the
circle is in the interior of the convex hull of these $ n$ points. Calculate the probabilities $ P_3$ and $ P_4$. [A. Renyi]
2004 Putnam, B2
Let $m$ and $n$ be positive integers. Show that
$\frac{(m+n)!}{(m+n)^{m+n}} < \frac{m!}{m^m}\cdot\frac{n!}{n^n}$
1999 Harvard-MIT Mathematics Tournament, 9
How many ways are there to cover a $3\times 8$ rectangle with $12$ identical dominoes?
2019 Harvard-MIT Mathematics Tournament, 4
Yannick is playing a game with $100$ rounds, starting with $1$ coin. During each round, there is an $n\%$ chance that he gains an extra coin, where $n$ is the number of coins he has at the beginning of the round. What is the expected number of coins he will have at the end of the game?
2011 AMC 10, 16
A dart board is a regular octagon divided into regions as shown. Suppose that a dart thrown at the board is equally likely to land anywhere on the board. What is probability that the dart lands within the center square?
[asy]
unitsize(10mm);
defaultpen(linewidth(.8pt)+fontsize(10pt));
dotfactor=4;
pair A=(0,1), B=(1,0), C=(1+sqrt(2),0), D=(2+sqrt(2),1), E=(2+sqrt(2),1+sqrt(2)), F=(1+sqrt(2),2+sqrt(2)), G=(1,2+sqrt(2)), H=(0,1+sqrt(2));
draw(A--B--C--D--E--F--G--H--cycle);
draw(A--D);
draw(B--G);
draw(C--F);
draw(E--H);
[/asy]
$ \textbf{(A)}\ \frac{\sqrt{2} - 1}{2} \qquad\textbf{(B)}\ \frac{1}{4} \qquad\textbf{(C)}\ \frac{2 - \sqrt{2}}{2} \qquad\textbf{(D)}\ \frac{\sqrt{2}}{4} \qquad\textbf{(E)}\ 2 - \sqrt{2}$
2016 PUMaC Combinatorics A, 5
Let $a_1,a_2,a_3,\ldots$ be an infinite sequence where for all positive integers $i$, $a_i$ is chosen to be a random positive integer between $1$ and $2016$, inclusive. Let $S$ be the set of all positive integers $k$ such that for all positive integers $j<k$, $a_j\neq a_k$. (So $1\in S$; $2\in S$ if and only if $a_1\neq a_2$; $3\in S$ if and only if $a_1\neq a_3$ and $a_2\neq a_3$; and so on.) In simplest form, let $\dfrac{p}{q}$ be the expected number of positive integers $m$ such that $m$ and $m+1$ are in $S$. Compute $pq$.
1986 IMO Longlists, 10
A set of $n$ standard dice are shaken and randomly placed in a straight line. If $n < 2r$ and $r < s$, then the probability that there will be a string of at least $r$, but not more than $s$, consecutive $1$'s can be written as $\frac{P}{6^{s+2}}$. Find an explicit expression for $P$.
2005 Purple Comet Problems, 10
A jar contains $2$ yellow candies, $4$ red candies, and $6$ blue candies. Candies are randomly drawn out of the jar one-by-one and eaten. The probability that the $2$ yellow candies will be eaten before any of the red candies are eaten is given by the fraction $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
2016 AIME Problems, 2
Two dice appear to be standard dice with their faces numbered from $1$ to $6$, but each die is weighted so that the probability of rolling the number $k$ is directly proportional to $k$. The probability of rolling a $7$ with this pair of dice is $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
2022 Vietnam National Olympiad, 2
We are given 4 similar dices. Denote $x_i (1\le x_i \le 6)$ be the number of dots on a face appearing on the $i$-th dice $1\le i \le 4$
a) Find the numbers of $(x_1,x_2,x_3,x_4)$
b) Find the probability that there is a number $x_j$ such that $x_j$ is equal to the sum of the other 3 numbers
c) Find the probability that we can divide $x_1,x_2,x_3,x_4$ into 2 groups has the same sum
2004 Purple Comet Problems, 19
There are three bags. One bag contains three green candies and one red candy. One bag contains two green candies and two red candies. One bag contains one green candy and three red candies. A child randomly selects one of the bags, randomly chooses a first candy from that bag, and eats the candy. If the first candy had been green, the child randomly chooses one of the other two bags and randomly selects a second candy from that bag. If the first candy had been red, the child randomly selects a second candy from the same bag as the first candy. If the probability that the second candy is green is given by the fraction $m/n$ in lowest terms, find $m + n$.
2016 HMNT, 1
DeAndre Jordan shoots free throws that are worth $1$ point each. He makes $40\%$ of his shots. If he takes two shots find the probability that he scores at least $1$ point.
2009 AMC 10, 25
Each face of a cube is given a single narrow stripe painted from the center of one edge to the center of its opposite edge. The choice of the edge pairing is made at random and independently for each face. What is the probability that there is a continuous stripe encircling the cube?
$ \textbf{(A)}\ \frac {1}{8}\qquad \textbf{(B)}\ \frac {3}{16}\qquad \textbf{(C)}\ \frac {1}{4} \qquad \textbf{(D)}\ \frac {3}{8}\qquad \textbf{(E)}\ \frac {1}{2}$
2010 AMC 12/AHSME, 11
A palindrome between $ 1000$ and $ 10,000$ is chosen at random. What is the probability that it is divisible by $ 7?$
$ \textbf{(A)}\ \dfrac{1}{10} \qquad \textbf{(B)}\ \dfrac{1}{9} \qquad \textbf{(C)}\ \dfrac{1}{7} \qquad \textbf{(D)}\ \dfrac{1}{6}\qquad \textbf{(E)}\ \dfrac{1}{5}$
2012 NIMO Problems, 8
Bob has invented the Very Normal Coin (VNC). When the VNC is flipped, it shows heads $\textstyle\frac{1}{2}$ of the time and tails $\textstyle\frac{1}{2}$ of the time - unless it has yielded the same result five times in a row, in which case it is guaranteed to yield the opposite result. For example, if Bob flips five heads in a row, then the next flip is guaranteed to be tails.
Bob flips the VNC an infinite number of times. On the $n$th flip, Bob bets $2^{-n}$ dollars that the VNC will show heads (so if the second flip shows heads, Bob wins $\$0.25$, and if the third flip shows tails, Bob loses $\$0.125$).
Assume that dollars are infinitely divisible. Given that the first flip is heads, the expected number of dollars Bob is expected to win can be expressed as $\frac{a}{b}$ for relatively prime positive integers $a, b$. Compute $100a + b$.
[i]Proposed by Lewis Chen[/i]
2003 AMC 12-AHSME, 19
Let $ S$ be the set of permutations of the sequence $ 1, 2, 3, 4, 5$ for which the first term is not $ 1$. A permutation is chosen randomly from $ S$. The probability that the second term is $ 2$, in lowest terms, is $ a/b$. What is $ a \plus{} b$?
$ \textbf{(A)}\ 5 \qquad
\textbf{(B)}\ 6 \qquad
\textbf{(C)}\ 11 \qquad
\textbf{(D)}\ 16 \qquad
\textbf{(E)}\ 19$