Found problems: 232
2013 ELMO Shortlist, 10
Let $AB=AC$ in $\triangle ABC$, and let $D$ be a point on segment $AB$. The tangent at $D$ to the circumcircle $\omega$ of $BCD$ hits $AC$ at $E$. The other tangent from $E$ to $\omega$ touches it at $F$, and $G=BF \cap CD$, $H=AG \cap BC$. Prove that $BH=2HC$.
[i]Proposed by David Stoner[/i]
2008 Costa Rica - Final Round, 2
Let $ ABC$ be a triangle and let $ P$ be a point on the angle bisector $ AD$, with $ D$ on $ BC$. Let $ E$, $ F$ and $ G$ be the intersections of $ AP$, $ BP$ and $ CP$ with the circumcircle of the triangle, respectively. Let $ H$ be the intersection of $ EF$ and $ AC$, and let $ I$ be the intersection of $ EG$ and $ AB$. Determine the geometric place of the intersection of $ BH$ and $ CI$ when $ P$ varies.
2018 IMO Shortlist, C1
Let $n\geqslant 3$ be an integer. Prove that there exists a set $S$ of $2n$ positive integers satisfying the following property: For every $m=2,3,...,n$ the set $S$ can be partitioned into two subsets with equal sums of elements, with one of subsets of cardinality $m$.
2010 Olympic Revenge, 6
Let $ABC$ to be a triangle and $\Gamma$ its circumcircle. Also, let $D, F, G$ and $E$, in this order, on the arc $BC$ which does not contain $A$ satisfying $\angle BAD = \angle CAE$ and $\angle BAF = \angle CAG$. Let $D`, F`, G`$ and $E`$ to be the intersections of $AD, AF, AG$ and $AE$ with $BC$, respectively. Moreover, $X$ is the intersection of $DF`$ with $EG`$, $Y$ is the intersection of $D`F$ with $E`G$, $Z$ is the intersection of $D`G$ with $E`F$ and $W$ is the intersection of $EF`$ with $DG`$.
Prove that $X, Y$ and $A$ are collinear, such as $W, Z$ and $A$. Moreover, prove that $\angle BAX = \angle CAZ$.
KoMaL A Problems 2023/2024, A. 873
Let $ABCD$ be a convex cyclic quadrilateral satisfying $AB\cdot CD=AD\cdot BC$. Let the inscribed circle $\omega$ of triangle $ABC$ be tangent to sides $BC$, $CA$ and $AB$ at points $A', B'$ and $C'$, respectively. Let point $K$ be the intersection of line $ID$ and the nine-point circle of triangle $A'B'C'$ that is inside line segment $ID$. Let $S$ denote the centroid of triangle $A'B'C'$. Prove that lines $SK$ and $BB'$ intersect each other on circle $\omega$.
[i]Proposed by Áron Bán-Szabó, Budapest[/i]
2014 Romania Team Selection Test, 1
Let $\triangle ABC$ be an acute triangle of circumcentre $O$. Let the tangents to the circumcircle of $\triangle ABC$ in points $B$ and $C$ meet at point $P$. The circle of centre $P$ and radius $PB=PC$ meets the internal angle bisector of $\angle BAC$ inside $\triangle ABC$ at point $S$, and $OS \cap BC = D$. The projections of $S$ on $AC$ and $AB$ respectively are $E$ and $F$. Prove that $AD$, $BE$ and $CF$ are concurrent.
[i]Author: Cosmin Pohoata[/i]
2013 ELMO Shortlist, 9
Let $ABCD$ be a cyclic quadrilateral inscribed in circle $\omega$ whose diagonals meet at $F$. Lines $AB$ and $CD$ meet at $E$. Segment $EF$ intersects $\omega$ at $X$. Lines $BX$ and $CD$ meet at $M$, and lines $CX$ and $AB$ meet at $N$. Prove that $MN$ and $BC$ concur with the tangent to $\omega$ at $X$.
[i]Proposed by Allen Liu[/i]