This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2015 BAMO, 4

In a quadrilateral, the two segments connecting the midpoints of its opposite sides are equal in length. Prove that the diagonals of the quadrilateral are perpendicular. (In other words, let $M,N,P,$ and $Q$ be the midpoints of sides $AB,BC,CD,$ and $DA$ in quadrilateral $ABCD$. It is known that segments $MP$ and $NQ$ are equal in length. Prove that $AC$ and $BD$ are perpendicular.)