This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 37

2013 German National Olympiad, 4

Let $ABCDEFGH$ be a cube of sidelength $a$ and such that $AG$ is one of the space diagonals. Consider paths on the surface of this cube. Then determine the set of points $P$ on the surface for which the shortest path from $P$ to $A$ and from $P$ to $G$ have the same length $l.$ Also determine all possible values of $l$ depending on $a.$

1971 IMO Longlists, 45

A broken line $A_1A_2 \ldots A_n$ is drawn in a $50 \times 50$ square, so that the distance from any point of the square to the broken line is less than $1$. Prove that its total length is greater than $1248.$

2022 Bulgarian Spring Math Competition, Problem 11.2

Tags: geometry , length
A circle through the vertices $A$ and $B$ of $\triangle ABC$ intersects segments $AC$ and $BC$ at points $P$ and $Q$ respectively. If $AQ=AC$, $\angle BAQ=\angle CBP$ and $AB=(\sqrt{3}+1)PQ$, find the measures of the angles of $\triangle ABC$.

1971 IMO Longlists, 17

We are given two mutually tangent circles in the plane, with radii $r_1, r_2$. A line intersects these circles in four points, determining three segments of equal length. Find this length as a function of $r_1$ and $r_2$ and the condition for the solvability of the problem.

2012 USA Team Selection Test, 1

In acute triangle $ABC$, $\angle{A}<\angle{B}$ and $\angle{A}<\angle{C}$. Let $P$ be a variable point on side $BC$. Points $D$ and $E$ lie on sides $AB$ and $AC$, respectively, such that $BP=PD$ and $CP=PE$. Prove that as $P$ moves along side $BC$, the circumcircle of triangle $ADE$ passes through a fixed point other than $A$.

2016 Finnish National High School Mathematics Comp, 3

From the foot of one altitude of the acute triangle, perpendiculars are drawn on the other two sides, that meet the other sides at $P$ and $Q$. Show that the length of $PQ$ does not depend on which of the three altitudes is selected.

Kvant 2023, M2767

It is easy to prove that in a right triangle the sum of the radii of the incircle and three excircles is equal to the perimeter. Prove that the opposite statement is also true. [i]Proposed by I. Weinstein[/i]

2010 German National Olympiad, 1

Given two circles $k$ and $l$ which intersect at two points. One of their common tangents touches $k$ at point $K$, while the other common tangent touches $l$ at $L.$ Let $A$ and $B$ be the intersections of the line $KL$ with the circles $k$ and $l$, respectively. Prove that $\overline{AK} = \overline{BL}.$

2023 Sharygin Geometry Olympiad, 8

A triangle $ABC$ $(a>b>c)$ is given. Its incenter $I$ and the touching points $K, N$ of the incircle with $BC$ and $AC$ respectively are marked. Construct a segment with length $a-c$ using only a ruler and drawing at most three lines.

2003 IMO Shortlist, 4

Let $\Gamma_1$, $\Gamma_2$, $\Gamma_3$, $\Gamma_4$ be distinct circles such that $\Gamma_1$, $\Gamma_3$ are externally tangent at $P$, and $\Gamma_2$, $\Gamma_4$ are externally tangent at the same point $P$. Suppose that $\Gamma_1$ and $\Gamma_2$; $\Gamma_2$ and $\Gamma_3$; $\Gamma_3$ and $\Gamma_4$; $\Gamma_4$ and $\Gamma_1$ meet at $A$, $B$, $C$, $D$, respectively, and that all these points are different from $P$. Prove that \[ \frac{AB\cdot BC}{AD\cdot DC}=\frac{PB^2}{PD^2}. \]

2022/2023 Tournament of Towns, P4

Tags: geometry , hexagon , length
The triangles $AB'C, CA'B$ and $BC'A$ are constructed on the sides of the equilateral triangle $ABC.$ In the resulting hexagon $AB'CA'BC'$ each of the angles $\angle A'BC',\angle C'AB'$ and $\angle B'CA'$ is greater than $120^\circ$ and the sides satisfy the equalities $AB' = AC',BC' = BA'$ and $CA' = CB'.$ Prove that the segments $AB',BC'$ and $CA'$ can form a triangle. [i]David Brodsky[/i]

2013 Singapore Senior Math Olympiad, 1

In the Triangle ABC AB>AC, the extension of the altitude AD with D lying inside BC intersects the circum-circle of the Triangle ABC at P. The circle through P and tangent to BC at D intersects the circum-circle of Triangle ABC at Q distinct from P with PQ=DQ. Prove that AD=BD-DC

1971 IMO Shortlist, 4

We are given two mutually tangent circles in the plane, with radii $r_1, r_2$. A line intersects these circles in four points, determining three segments of equal length. Find this length as a function of $r_1$ and $r_2$ and the condition for the solvability of the problem.

2010 Indonesia TST, 2

Let $\Gamma_1$, $\Gamma_2$, $\Gamma_3$, $\Gamma_4$ be distinct circles such that $\Gamma_1$, $\Gamma_3$ are externally tangent at $P$, and $\Gamma_2$, $\Gamma_4$ are externally tangent at the same point $P$. Suppose that $\Gamma_1$ and $\Gamma_2$; $\Gamma_2$ and $\Gamma_3$; $\Gamma_3$ and $\Gamma_4$; $\Gamma_4$ and $\Gamma_1$ meet at $A$, $B$, $C$, $D$, respectively, and that all these points are different from $P$. Prove that \[ \frac{AB\cdot BC}{AD\cdot DC}=\frac{PB^2}{PD^2}. \]

2015 BAMO, 4

In a quadrilateral, the two segments connecting the midpoints of its opposite sides are equal in length. Prove that the diagonals of the quadrilateral are perpendicular. (In other words, let $M,N,P,$ and $Q$ be the midpoints of sides $AB,BC,CD,$ and $DA$ in quadrilateral $ABCD$. It is known that segments $MP$ and $NQ$ are equal in length. Prove that $AC$ and $BD$ are perpendicular.)

1982 IMO, 3

Let $S$ be a square with sides length $100$. Let $L$ be a path within $S$ which does not meet itself and which is composed of line segments $A_0A_1,A_1A_2,A_2A_3,\ldots,A_{n-1}A_n$ with $A_0=A_n$. Suppose that for every point $P$ on the boundary of $S$ there is a point of $L$ at a distance from $P$ no greater than $\frac {1} {2}$. Prove that there are two points $X$ and $Y$ of $L$ such that the distance between $X$ and $Y$ is not greater than $1$ and the length of the part of $L$ which lies between $X$ and $Y$ is not smaller than $198$.

2022 German National Olympiad, 2

As everyone knows, the people of [i]Plane Land[/i] love Planimetrics. Therefore, they imagine their country as completely planar, every city in the country as a geometric point and every road as the line segment connecting two points. Additionally to the existing cities, it is possible to build [i]roundabouts[/i], i.e. points in the road network from where at least two roads emanate. All road crossings or junctions are build as roundabouts. Via this route network, every two cities should be connected by a sequence of roads and possibly roundabouts. In Plane Land, the length of a road is taken as the geometric length of the corresponding line segment. The ingenious road engineer Armin Asphalt presents a new road map, of which it is known that there is no road network with a smaller total length of all roads. Moreover, there is no road map with the same total length of all roads and fewer roundabouts. Prove that in the road map of Armin Asphalt, at most three roads emanate from each city, and exactly three from each roundabout.

Kvant 2023, M2761

Tags: geometry , length
Is it possible to fit a regular polygon into a circle of radius one so that among the lengths of its diagonals there are 2023 different values whose product is equal to one? [i]Proposed by A. Kuznetsov[/i]

2019 IMEO, 1

Let $ABC$ be a scalene triangle with circumcircle $\omega$. The tangent to $\omega$ at $A$ meets $BC$ at $D$. The $A$-median of triangle $ABC$ intersects $BC$ and $\omega$ at $M$ and $N$, respectively. Suppose that $K$ is a point such that $ADMK$ is a parallelogram. Prove that $KA = KN$. [i]Proposed by Alexandru Lopotenco (Moldova)[/i]

2024 CAPS Match, 3

Let $ABC$ be a triangle and $D$ a point on its side $BC.$ Points $E, F$ lie on the lines $AB, AC$ beyond vertices $B, C,$ respectively, such that $BE = BD$ and $CF = CD.$ Let $P$ be a point such that $D$ is the incenter of triangle $P EF.$ Prove that $P$ lies inside the circumcircle $\Omega$ of triangle $ABC$ or on it.

2019 Poland - Second Round, 6

Tags: geometry , angle , length
Let $X$ be a point lying in the interior of the acute triangle $ABC$ such that \begin{align*} \sphericalangle BAX = 2\sphericalangle XBA \ \ \ \ \hbox{and} \ \ \ \ \sphericalangle XAC = 2\sphericalangle ACX. \end{align*} Denote by $M$ the midpoint of the arc $BC$ of the circumcircle $(ABC)$ containing $A$. Prove that $XM=XA$.

2010 Contests, 2

Let $\Gamma_1$, $\Gamma_2$, $\Gamma_3$, $\Gamma_4$ be distinct circles such that $\Gamma_1$, $\Gamma_3$ are externally tangent at $P$, and $\Gamma_2$, $\Gamma_4$ are externally tangent at the same point $P$. Suppose that $\Gamma_1$ and $\Gamma_2$; $\Gamma_2$ and $\Gamma_3$; $\Gamma_3$ and $\Gamma_4$; $\Gamma_4$ and $\Gamma_1$ meet at $A$, $B$, $C$, $D$, respectively, and that all these points are different from $P$. Prove that \[ \frac{AB\cdot BC}{AD\cdot DC}=\frac{PB^2}{PD^2}. \]

2021/2022 Tournament of Towns, P3

Tags: geometry , length
The hypotenuse of a right triangle has length 1. Consider the line passing through the points of tangency of the incircle with the legs of the triangle. The circumcircle of the triangle cuts out a segment of this line. What is the possible length of this segment? [i]Maxim Volchkevich[/i]

1971 IMO Shortlist, 14

A broken line $A_1A_2 \ldots A_n$ is drawn in a $50 \times 50$ square, so that the distance from any point of the square to the broken line is less than $1$. Prove that its total length is greater than $1248.$

2021 German National Olympiad, 4

Let $OFT$ and $NOT$ be two similar triangles (with the same orientation) and let $FANO$ be a parallelogram. Show that \[\vert OF\vert \cdot \vert ON\vert=\vert OA\vert \cdot \vert OT\vert.\]