This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 37

2010 German National Olympiad, 1

Given two circles $k$ and $l$ which intersect at two points. One of their common tangents touches $k$ at point $K$, while the other common tangent touches $l$ at $L.$ Let $A$ and $B$ be the intersections of the line $KL$ with the circles $k$ and $l$, respectively. Prove that $\overline{AK} = \overline{BL}.$

Kyiv City MO Seniors Round2 2010+ geometry, 2010.10.4

The points $A \ne B$ are given on the plane. The point $C$ moves along the plane in such a way that $\angle ACB = \alpha$ , where $\alpha$ is the fixed angle from the interval ($0^o, 180^o$). The circle inscribed in triangle $ABC$ has center the point $I$ and touches the sides $AB, BC, CA$ at points $D, E, F$ accordingly. Rays $AI$ and $BI$ intersect the line $EF$ at points $M$ and $N$, respectively. Show that: a) the segment $MN$ has a constant length, b) all circles circumscribed around triangle $DMN$ have a common point

2012 USA Team Selection Test, 1

In acute triangle $ABC$, $\angle{A}<\angle{B}$ and $\angle{A}<\angle{C}$. Let $P$ be a variable point on side $BC$. Points $D$ and $E$ lie on sides $AB$ and $AC$, respectively, such that $BP=PD$ and $CP=PE$. Prove that as $P$ moves along side $BC$, the circumcircle of triangle $ADE$ passes through a fixed point other than $A$.

2019 IMEO, 1

Let $ABC$ be a scalene triangle with circumcircle $\omega$. The tangent to $\omega$ at $A$ meets $BC$ at $D$. The $A$-median of triangle $ABC$ intersects $BC$ and $\omega$ at $M$ and $N$, respectively. Suppose that $K$ is a point such that $ADMK$ is a parallelogram. Prove that $KA = KN$. [i]Proposed by Alexandru Lopotenco (Moldova)[/i]

2021 Alibaba Global Math Competition, 5

Suppose that $A$ is a finite subset of $\mathbb{R}^d$ such that (a) every three distinct points in $A$ contain two points that are exactly at unit distance apart, and (b) the Euclidean norm of every point $v$ in $A$ satisfies \[\sqrt{\frac{1}{2}-\frac{1}{2\vert A\vert}} \le \|v\| \le \sqrt{\frac{1}{2}+\frac{1}{2\vert A\vert}}.\] Prove that the cardinality of $A$ is at most $2d+4$.

2020 Adygea Teachers' Geometry Olympiad, 4

Tags: angle , arc , tangent , min , length , circles , geometry
A circle is inscribed in an angle with vertex $O$, touching its sides at points $M$ and $N$. On an arc $MN$ nearest to point $O$, an arbitrary point $P$ is selected. At point $P$, a tangent is drawn to the circle $P$, intersecting the sides of the angle at points $A$ and $B$. Prove that that the length of the segment $AB$ is the smallest when $P$ is its midpoint.

2021 Bulgaria EGMO TST, 1

On the side $AB$ of a triangle $ABC$ is chosen a point $P$. Let $Q$ be the midpoint of $BC$ and let $CP$ and $AQ$ intersect at $R$. If $AB + AP = CP$, prove that $CR = AB$.

1982 IMO, 3

Let $S$ be a square with sides length $100$. Let $L$ be a path within $S$ which does not meet itself and which is composed of line segments $A_0A_1,A_1A_2,A_2A_3,\ldots,A_{n-1}A_n$ with $A_0=A_n$. Suppose that for every point $P$ on the boundary of $S$ there is a point of $L$ at a distance from $P$ no greater than $\frac {1} {2}$. Prove that there are two points $X$ and $Y$ of $L$ such that the distance between $X$ and $Y$ is not greater than $1$ and the length of the part of $L$ which lies between $X$ and $Y$ is not smaller than $198$.

2021 German National Olympiad, 4

Let $OFT$ and $NOT$ be two similar triangles (with the same orientation) and let $FANO$ be a parallelogram. Show that \[\vert OF\vert \cdot \vert ON\vert=\vert OA\vert \cdot \vert OT\vert.\]

2016 Finnish National High School Mathematics Comp, 3

From the foot of one altitude of the acute triangle, perpendiculars are drawn on the other two sides, that meet the other sides at $P$ and $Q$. Show that the length of $PQ$ does not depend on which of the three altitudes is selected.

2003 IMO Shortlist, 4

Let $\Gamma_1$, $\Gamma_2$, $\Gamma_3$, $\Gamma_4$ be distinct circles such that $\Gamma_1$, $\Gamma_3$ are externally tangent at $P$, and $\Gamma_2$, $\Gamma_4$ are externally tangent at the same point $P$. Suppose that $\Gamma_1$ and $\Gamma_2$; $\Gamma_2$ and $\Gamma_3$; $\Gamma_3$ and $\Gamma_4$; $\Gamma_4$ and $\Gamma_1$ meet at $A$, $B$, $C$, $D$, respectively, and that all these points are different from $P$. Prove that \[ \frac{AB\cdot BC}{AD\cdot DC}=\frac{PB^2}{PD^2}. \]

2015 BAMO, 4

In a quadrilateral, the two segments connecting the midpoints of its opposite sides are equal in length. Prove that the diagonals of the quadrilateral are perpendicular. (In other words, let $M,N,P,$ and $Q$ be the midpoints of sides $AB,BC,CD,$ and $DA$ in quadrilateral $ABCD$. It is known that segments $MP$ and $NQ$ are equal in length. Prove that $AC$ and $BD$ are perpendicular.)

2010 Indonesia TST, 2

Let $\Gamma_1$, $\Gamma_2$, $\Gamma_3$, $\Gamma_4$ be distinct circles such that $\Gamma_1$, $\Gamma_3$ are externally tangent at $P$, and $\Gamma_2$, $\Gamma_4$ are externally tangent at the same point $P$. Suppose that $\Gamma_1$ and $\Gamma_2$; $\Gamma_2$ and $\Gamma_3$; $\Gamma_3$ and $\Gamma_4$; $\Gamma_4$ and $\Gamma_1$ meet at $A$, $B$, $C$, $D$, respectively, and that all these points are different from $P$. Prove that \[ \frac{AB\cdot BC}{AD\cdot DC}=\frac{PB^2}{PD^2}. \]

1982 IMO Longlists, 55

Let $S$ be a square with sides length $100$. Let $L$ be a path within $S$ which does not meet itself and which is composed of line segments $A_0A_1,A_1A_2,A_2A_3,\ldots,A_{n-1}A_n$ with $A_0=A_n$. Suppose that for every point $P$ on the boundary of $S$ there is a point of $L$ at a distance from $P$ no greater than $\frac {1} {2}$. Prove that there are two points $X$ and $Y$ of $L$ such that the distance between $X$ and $Y$ is not greater than $1$ and the length of the part of $L$ which lies between $X$ and $Y$ is not smaller than $198$.

2021 Argentina National Olympiad, 3

Tags: geometry , length , arc
A circle is divided into $2n$ equal arcs by $2n$ points. Find all $n>1$ such that these points can be joined in pairs using $n$ segments, all of different lengths and such that each point is the endpoint of exactly one segment.

2014 Thailand Mathematical Olympiad, 7

Let $ABCD$ be a convex quadrilateral with shortest side $AB$ and longest side $CD$, and suppose that $AB < CD$. Show that there is a point $E \ne C, D$ on segment $CD$ with the following property: For all points $P \ne E$ on side $CD$, if we define $O_1$ and $O_2$ to be the circumcenters of $\vartriangle APD$ and $\vartriangle BPE$ respectively, then the length of $O_1O_2$ does not depend on $P$.

2022/2023 Tournament of Towns, P4

Tags: length , hexagon , geometry
The triangles $AB'C, CA'B$ and $BC'A$ are constructed on the sides of the equilateral triangle $ABC.$ In the resulting hexagon $AB'CA'BC'$ each of the angles $\angle A'BC',\angle C'AB'$ and $\angle B'CA'$ is greater than $120^\circ$ and the sides satisfy the equalities $AB' = AC',BC' = BA'$ and $CA' = CB'.$ Prove that the segments $AB',BC'$ and $CA'$ can form a triangle. [i]David Brodsky[/i]

1982 IMO Shortlist, 6

Let $S$ be a square with sides length $100$. Let $L$ be a path within $S$ which does not meet itself and which is composed of line segments $A_0A_1,A_1A_2,A_2A_3,\ldots,A_{n-1}A_n$ with $A_0=A_n$. Suppose that for every point $P$ on the boundary of $S$ there is a point of $L$ at a distance from $P$ no greater than $\frac {1} {2}$. Prove that there are two points $X$ and $Y$ of $L$ such that the distance between $X$ and $Y$ is not greater than $1$ and the length of the part of $L$ which lies between $X$ and $Y$ is not smaller than $198$.

2022 German National Olympiad, 2

As everyone knows, the people of [i]Plane Land[/i] love Planimetrics. Therefore, they imagine their country as completely planar, every city in the country as a geometric point and every road as the line segment connecting two points. Additionally to the existing cities, it is possible to build [i]roundabouts[/i], i.e. points in the road network from where at least two roads emanate. All road crossings or junctions are build as roundabouts. Via this route network, every two cities should be connected by a sequence of roads and possibly roundabouts. In Plane Land, the length of a road is taken as the geometric length of the corresponding line segment. The ingenious road engineer Armin Asphalt presents a new road map, of which it is known that there is no road network with a smaller total length of all roads. Moreover, there is no road map with the same total length of all roads and fewer roundabouts. Prove that in the road map of Armin Asphalt, at most three roads emanate from each city, and exactly three from each roundabout.

2020 Spain Mathematical Olympiad, 5

Tags: geometry , length
In an acute-angled triangle $ABC$, let $M$ be the midpoint of $AB$ and $P$ the foot of the altitude to $BC$. Prove that if $AC+BC = \sqrt{2}AB$, then the circumcircle of triangle $BMP$ is tangent to $AC$.

2024 CAPS Match, 3

Let $ABC$ be a triangle and $D$ a point on its side $BC.$ Points $E, F$ lie on the lines $AB, AC$ beyond vertices $B, C,$ respectively, such that $BE = BD$ and $CF = CD.$ Let $P$ be a point such that $D$ is the incenter of triangle $P EF.$ Prove that $P$ lies inside the circumcircle $\Omega$ of triangle $ABC$ or on it.

2021/2022 Tournament of Towns, P3

Tags: length , geometry
The hypotenuse of a right triangle has length 1. Consider the line passing through the points of tangency of the incircle with the legs of the triangle. The circumcircle of the triangle cuts out a segment of this line. What is the possible length of this segment? [i]Maxim Volchkevich[/i]

Kvant 2023, M2761

Tags: length , geometry
Is it possible to fit a regular polygon into a circle of radius one so that among the lengths of its diagonals there are 2023 different values whose product is equal to one? [i]Proposed by A. Kuznetsov[/i]

1971 IMO Shortlist, 4

We are given two mutually tangent circles in the plane, with radii $r_1, r_2$. A line intersects these circles in four points, determining three segments of equal length. Find this length as a function of $r_1$ and $r_2$ and the condition for the solvability of the problem.

1971 IMO Longlists, 17

We are given two mutually tangent circles in the plane, with radii $r_1, r_2$. A line intersects these circles in four points, determining three segments of equal length. Find this length as a function of $r_1$ and $r_2$ and the condition for the solvability of the problem.