This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 5

2013 Brazil Team Selection Test, 2

Let $ABCD$ be a cyclic quadrilateral whose diagonals $AC$ and $BD$ meet at $E$. The extensions of the sides $AD$ and $BC$ beyond $A$ and $B$ meet at $F$. Let $G$ be the point such that $ECGD$ is a parallelogram, and let $H$ be the image of $E$ under reflection in $AD$. Prove that $D,H,F,G$ are concyclic.

2018 Middle European Mathematical Olympiad, 3

Let $ABC$ be an acute-angled triangle with $AB<AC,$ and let $D$ be the foot of its altitude from$A.$ Let $R$ and $Q$ be the centroids of triangles $ABD$ and $ACD$, respectively. Let $P$ be a point on the line segment $BC$ such that $P \neq D$ and points $P$ $Q$ $R$ and $D$ are concyclic .Prove that the lines $AP$ $BQ$ and $CR$ are concurrent.

2021 Middle European Mathematical Olympiad, 3

Let $ABC$ be an acute triangle and $D$ an interior point of segment $BC$. Points $E$ and $F$ lie in the half-plane determined by the line $BC$ containing $A$ such that $DE$ is perpendicular to $BE$ and $DE$ is tangent to the circumcircle of $ACD$, while $DF$ is perpendicular to $CF$ and $DF$ is tangent to the circumcircle of $ABD$. Prove that the points $A, D, E$ and $F$ are concyclic.

2013 Moldova Team Selection Test, 3

Let $ABCD$ be a cyclic quadrilateral whose diagonals $AC$ and $BD$ meet at $E$. The extensions of the sides $AD$ and $BC$ beyond $A$ and $B$ meet at $F$. Let $G$ be the point such that $ECGD$ is a parallelogram, and let $H$ be the image of $E$ under reflection in $AD$. Prove that $D,H,F,G$ are concyclic.

2012 IMO Shortlist, G2

Let $ABCD$ be a cyclic quadrilateral whose diagonals $AC$ and $BD$ meet at $E$. The extensions of the sides $AD$ and $BC$ beyond $A$ and $B$ meet at $F$. Let $G$ be the point such that $ECGD$ is a parallelogram, and let $H$ be the image of $E$ under reflection in $AD$. Prove that $D,H,F,G$ are concyclic.