This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 242

2017 Oral Moscow Geometry Olympiad, 2

Given pyramid with base $n-gon$. How many maximum number of edges can be perpendicular to base?

2002 All-Russian Olympiad Regional Round, 11.2

The altitude of a quadrangular pyramid $SABCD$ passes through the intersection point of the diagonals of its base $ABCD$. From the tops of the base perpendiculars $AA_1$, $BB_1$, $CC_1$, $DD_1$ are dropped onto lines $SC$, $SD,$ $SA$ and $SB$ respectively. It turned out that the points $S$, $A_1$, $B_1$, $C_1$, $D_1$ are different and lie on the same sphere. Prove that lines $AA_1$, $ BB_1$, $CC_1$, $DD_1$ pass through one point.

2022 Adygea Teachers' Geometry Olympiad, 4

In a regular hexagonal pyramid $SABCDEF$, a plane is drawn through vertex $A$ and the midpoints of edges $SC$ and $CE$. Find the ratio in which this plane divides the volume of the pyramid.

1973 AMC 12/AHSME, 32

The volume of a pyramid whose base is an equilateral triangle of side length 6 and whose other edges are each of length $ \sqrt{15}$ is $ \textbf{(A)}\ 9 \qquad \textbf{(B)}\ 9/2 \qquad \textbf{(C)}\ 27/2 \qquad \textbf{(D)}\ \frac{9\sqrt3}{2} \qquad \textbf{(E)}\ \text{none of these}$

1995 May Olympiad, 4

Consider a pyramid whose base is an equilateral triangle $BCD$ and whose other faces are triangles isosceles, right at the common vertex $A$. An ant leaves the vertex $B$ arrives at a point $P$ of the $CD$ edge, from there goes to a point $Q$ of the edge $AC$ and returns to point $B$. If the path you made is minimal, how much is the angle $PQA$ ?

1991 Turkey Team Selection Test, 3

Let $U$ be the sum of lengths of sides of a tetrahedron (triangular pyramid) with vertices $O,A,B,C$. Let $V$ be the volume of the convex shape whose vertices are the midpoints of the sides of the tetrahedron. Show that $V\leq \frac{(U-|OA|-|BC| )(U-|OB|-|AC| )(U-|OC|-|AB| )}{(2^{7} \cdot 3)}$.

2015 Caucasus Mathematical Olympiad, 4

The midpoint of the edge $SA$ of the triangular pyramid of $SABC$ has equal distances from all the vertices of the pyramid. Let $SH$ be the height of the pyramid. Prove that $BA^2 + BH^2 = C A^2 + CH^2$.

1950 Moscow Mathematical Olympiad, 179

Two triangular pyramids have common base. One pyramid contains the other. Can the sum of the lengths of the edges of the inner pyramid be longer than that of the outer one?

2005 AMC 12/AHSME, 17

A unit cube is cut twice to form three triangular prisms, two of which are congruent, as shown in Figure 1. The cube is then cut in the same manner along the dashed lines shown in Figure 2. This creates nine pieces. What is the volume of the piece that contains vertex $ W$? [asy]import three; size(200); defaultpen(linewidth(.8pt)+fontsize(10pt)); currentprojection=oblique; path3 p1=(0,2,2)--(0,2,0)--(2,2,0)--(2,2,2)--(0,2,2)--(0,0,2)--(2,0,2)--(2,2,2); path3 p2=(2,2,0)--(2,0,0)--(2,0,2); path3 p3=(0,0,2)--(0,2,1)--(2,2,1)--(2,0,2); path3 p4=(2,2,1)--(2,0,0); pen finedashed=linetype("4 4"); draw(p1^^p2^^p3^^p4); draw(shift((4,0,0))*p1); draw(shift((4,0,0))*p2); draw(shift((4,0,0))*p3); draw(shift((4,0,0))*p4); draw((4,0,2)--(5,2,2)--(6,0,2),finedashed); draw((5,2,2)--(5,2,0)--(6,0,0),finedashed); label("$W$",(3,0,2)); draw((2.7,.3,2)--(2.1,1.9,2),linewidth(.6pt)); draw((3.4,.3,2)--(5.9,1.9,2),linewidth(.6pt)); label("Figure 1",(1,-0.5,2)); label("Figure 2",(5,-0.5,2));[/asy]$ \textbf{(A)}\ \frac {1}{12}\qquad \textbf{(B)}\ \frac {1}{9}\qquad \textbf{(C)}\ \frac {1}{8}\qquad \textbf{(D)}\ \frac {1}{6}\qquad \textbf{(E)}\ \frac {1}{4}$

1980 Bulgaria National Olympiad, Problem 3

Each diagonal of the base and each lateral edge of a $9$-gonal pyramid is colored either green or red. Show that there must exist a triangle with the vertices at vertices of the pyramid having all three sides of the same color.

2010 Princeton University Math Competition, 5

A cuboctahedron is a solid with 6 square faces and 8 equilateral triangle faces, with each edge adjacent to both a square and a triangle (see picture). Suppose the ratio of the volume of an octahedron to a cuboctahedron with the same side length is $r$. Find $100r^2$. [asy] // dragon96, replacing // [img]http://i.imgur.com/08FbQs.png[/img] size(140); defaultpen(linewidth(.7)); real alpha=10, x=-0.12, y=0.025, r=1/sqrt(3); path hex=rotate(alpha)*polygon(6); pair A = shift(x,y)*(r*dir(330+alpha)), B = shift(x,y)*(r*dir(90+alpha)), C = shift(x,y)*(r*dir(210+alpha)); pair X = (-A.x, -A.y), Y = (-B.x, -B.y), Z = (-C.x, -C.y); int i; pair[] H; for(i=0; i<6; i=i+1) { H[i] = dir(alpha+60*i);} fill(X--Y--Z--cycle, rgb(204,255,255)); fill(H[5]--Y--Z--H[0]--cycle^^H[2]--H[3]--X--cycle, rgb(203,153,255)); fill(H[1]--Z--X--H[2]--cycle^^H[4]--H[5]--Y--cycle, rgb(255,203,153)); fill(H[3]--X--Y--H[4]--cycle^^H[0]--H[1]--Z--cycle, rgb(153,203,255)); draw(hex^^X--Y--Z--cycle); draw(H[1]--B--H[2]^^H[3]--C--H[4]^^H[5]--A--H[0]^^A--B--C--cycle, linewidth(0.6)+linetype("5 5")); draw(H[0]--Z--H[1]^^H[2]--X--H[3]^^H[4]--Y--H[5]);[/asy]

2004 National High School Mathematics League, 6

Shaft section of a circular cone with vertex $P$ is an isosceles right triangle. $A$ is a point on the circle of the bottom surface, while $B$ is a point inside the circle, $O$ is the center of the circle. If $AB\perp OB$ at $B$, $OH\perp PB$ at $H$, $PA=4$, $C$ is the midpoint of $PA$, then when the volume of triangular pyramid $O-HPC$ takes its maximum value, the length of $OB$ is $\text{(A)}\frac{\sqrt5}{3}\qquad\text{(B)}\frac{2\sqrt5}{3}\qquad\text{(C)}\frac{\sqrt6}{3}\qquad\text{(D)}\frac{2\sqrt6}{3}\qquad$

1977 IMO Longlists, 45

Let $E$ be a finite set of points such that $E$ is not contained in a plane and no three points of $E$ are collinear. Show that at least one of the following alternatives holds: (i) $E$ contains five points that are vertices of a convex pyramid having no other points in common with $E;$ (ii) some plane contains exactly three points from $E.$

2008 AMC 12/AHSME, 23

The sum of the base-$ 10$ logarithms of the divisors of $ 10^n$ is $ 792$. What is $ n$? $ \textbf{(A)}\ 11\qquad \textbf{(B)}\ 12\qquad \textbf{(C)}\ 13\qquad \textbf{(D)}\ 14\qquad \textbf{(E)}\ 15$

1989 AMC 8, 23

An artist has $14$ cubes, each with an edge of $1$ meter. She stands them on the ground to form a sculpture as shown. She then paints the exposed surface of the sculpture. How many square meters does she paint? $\text{(A)}\ 21 \qquad \text{(B)}\ 24 \qquad \text{(C)}\ 33 \qquad \text{(D)}\ 37 \qquad \text{(E)}\ 42$ [asy] draw((0,0)--(2.35,-.15)--(2.44,.81)--(.09,.96)--cycle); draw((.783333333,-.05)--(.873333333,.91)--(1.135,1.135)); draw((1.566666667,-.1)--(1.656666667,.86)--(1.89,1.1)); draw((2.35,-.15)--(4.3,1.5)--(4.39,2.46)--(2.44,.81)); draw((3,.4)--(3.09,1.36)--(2.61,1.4)); draw((3.65,.95)--(3.74,1.91)--(3.29,1.94)); draw((.09,.96)--(.76,1.49)--(.71,1.17)--(2.2,1.1)--(3.6,2.2)--(3.62,2.52)--(4.39,2.46)); draw((.76,1.49)--(.82,1.96)--(2.28,1.89)--(2.2,1.1)); draw((2.28,1.89)--(3.68,2.99)--(3.62,2.52)); draw((1.455,1.135)--(1.55,1.925)--(1.89,2.26)); draw((2.5,2.48)--(2.98,2.44)--(2.9,1.65)); draw((.82,1.96)--(1.55,2.6)--(1.51,2.3)--(2.2,2.26)--(2.9,2.8)--(2.93,3.05)--(3.68,2.99)); draw((1.55,2.6)--(1.59,3.09)--(2.28,3.05)--(2.2,2.26)); draw((2.28,3.05)--(2.98,3.59)--(2.93,3.05)); draw((1.59,3.09)--(2.29,3.63)--(2.98,3.59)); [/asy]

2011 Purple Comet Problems, 15

A pyramid has a base which is an equilateral triangle with side length $300$ centimeters. The vertex of the pyramid is $100$ centimeters above the center of the triangular base. A mouse starts at a corner of the base of the pyramid and walks up the edge of the pyramid toward the vertex at the top. When the mouse has walked a distance of $134$ centimeters, how many centimeters above the base of the pyramid is the mouse?

2018 Moscow Mathematical Olympiad, 2

There is tetrahedron and square pyramid, both with all edges equal $1$. Show how to cut them into several parts and glue together from these parts a cube (without voids and cracks, all parts must be used)

2012 Poland - Second Round, 2

Prove that for tetrahedron $ABCD$; vertex $D$, center of insphere and centroid of $ABCD$ are collinear iff areas of triangles $ABD,BCD,CAD$ are equal.

2004 All-Russian Olympiad Regional Round, 11.8

Given a triangular pyramid $ABCD$. Sphere $S_1$ passing through points $A$, $B$, $C$, intersects edges $AD$, $BD$, $CD$ at points $K$, $L$, $M$, respectively; sphere $S_2$ passing through points $A$, $B$, $D$ intersects the edges $AC$, $BC$, $DC$ at points $P$, $Q$, $M$ respectively. It turned out that $KL \parallel PQ$. Prove that the bisectors of plane angles $KMQ$ and $LMP$ are the same.

1959 Polish MO Finals, 3

Given a pyramid with square base $ ABCD $ and vertex $ S $. Find the shortest path whose starting and ending point is the point $ S $ and which passes through all the vertices of the base.

1969 Bulgaria National Olympiad, Problem 6

It is given that $r=\left(3\left(\sqrt6-1\right)-4\left(\sqrt3+1\right)+5\sqrt2\right)R$ where $r$ and $R$ are the radii of the inscribed and circumscribed spheres in a regular $n$-angled pyramid. If it is known that the centers of the spheres given coincide, (a) find $n$; (b) if $n=3$ and the lengths of all edges are equal to a find the volumes of the parts from the pyramid after drawing a plane $\mu$, which intersects two of the edges passing through point $A$ respectively in the points $E$ and $F$ in such a way that $|AE|=p$ and $|AF|=q$ $(p<a,q<a)$, intersects the extension of the third edge behind opposite of the vertex $A$ wall in the point $G$ in such a way that $|AG|=t$ $(t>a)$.

2007 AIME Problems, 13

A square pyramid with base $ABCD$ and vertex $E$ has eight edges of length 4. A plane passes through the midpoints of $\overline{AE}$, $\overline{BC}$, and $\overline{CD}$. The plane's intersection with the pyramid has an area that can be expressed as $\sqrt{p}$. Find $p$.

2006 Austrian-Polish Competition, 10

Let $ABCDS$ be a (not neccessarily straight) pyramid with a rectangular base $ABCD$ and acute triangular faces $ABS,BCS,CDS,DAS$. We consider all cuboids which are inscribed inside the pyramid with its base being in the plane $ABCD$ and its upper vertexes are in the triangular faces (one in each). Find the locus of the midpoints of these cuboids.

Denmark (Mohr) - geometry, 2005.1

This figure is cut out from a sheet of paper. Folding the sides upwards along the dashed lines, one gets a (non-equilateral) pyramid with a square base. Calculate the area of the base. [img]https://1.bp.blogspot.com/-lPpfHqfMMRY/XzcBIiF-n2I/AAAAAAAAMW8/nPs_mLe5C8srcxNz45Wg-_SqHlRAsAmigCLcBGAsYHQ/s0/2005%2BMohr%2Bp1.png[/img]

2008 Flanders Math Olympiad, 3

A quadrilateral pyramid and a regular tetrahedron have edges that are all equal in length. They are glued together so that they have in common $1$ equilateral triangle . Prove that the resulting body has exactly $5$ sides.