Found problems: 216
1949-56 Chisinau City MO, 21
The sides of the triangle $ABC$ satisfy the relation $c^2 = a^2 + b^2$. Show that angle $C$ is right.
2006 AMC 12/AHSME, 17
Square $ ABCD$ has side length $ s$, a circle centered at $ E$ has radius $ r$, and $ r$ and $ s$ are both rational. The circle passes through $ D$, and $ D$ lies on $ \overline{BE}$. Point $ F$ lies on the circle, on the same side of $ \overline{BE}$ as $ A$. Segment $ AF$ is tangent to the circle, and $ AF \equal{} \sqrt {9 \plus{} 5\sqrt {2}}$. What is $ r/s$?
[asy]unitsize(6mm);
defaultpen(linewidth(.8pt)+fontsize(10pt));
dotfactor=3;
pair B=(0,0), C=(3,0), D=(3,3), A=(0,3);
pair Ep=(3+5*sqrt(2)/6,3+5*sqrt(2)/6);
pair F=intersectionpoints(Circle(A,sqrt(9+5*sqrt(2))),Circle(Ep,5/3))[0];
pair[] dots={A,B,C,D,Ep,F};
draw(A--F);
draw(Circle(Ep,5/3));
draw(A--B--C--D--cycle);
dot(dots);
label("$A$",A,NW);
label("$B$",B,SW);
label("$C$",C,SE);
label("$D$",D,SW);
label("$E$",Ep,E);
label("$F$",F,NW);[/asy]$ \textbf{(A) } \frac {1}{2}\qquad \textbf{(B) } \frac {5}{9}\qquad \textbf{(C) } \frac {3}{5}\qquad \textbf{(D) } \frac {5}{3}\qquad \textbf{(E) } \frac {9}{5}$
1986 AIME Problems, 15
Let triangle $ABC$ be a right triangle in the xy-plane with a right angle at $C$. Given that the length of the hypotenuse $AB$ is 60, and that the medians through $A$ and $B$ lie along the lines $y=x+3$ and $y=2x+4$ respectively, find the area of triangle $ABC$.
2006 Harvard-MIT Mathematics Tournament, 8
Triangle $ABC$ has a right angle at $B$. Point $D$ lies on side $BC$ such that $3\angle BAD = \angle BAC$. Given $AC=2$ and $CD=1$, compute $BD$.
2006 AMC 10, 16
A circle of radius 1 is tangent to a circle of radius 2. The sides of $ \triangle ABC$ are tangent to the circles as shown, and the sides $ \overline{AB}$ and $ \overline{AC}$ are congruent. What is the area of $ \triangle ABC$?
[asy]defaultpen(black+linewidth(0.7));
size(7cm);
real t=2^0.5;
D((0,0)--(4*t,0)--(2*t,8)--cycle, black);
D(CR((2*t,2),2), black);
D(CR((2*t,5),1), black);
dot(origin^^(4t,0)^^(2t,8));
label("B", (0,0), SW);
label("C", (4*t,0), SE);
label("A", (2*t,8), N);
D((2*t,2)--(2*t,4), black); D((2*t,5)--(2*t,6), black);
MP('2', (2*t,3), W); MP('1',(2*t, 5.5), W);[/asy]
$ \textbf{(A) } \frac {35}2 \qquad \textbf{(B) } 15\sqrt {2} \qquad \textbf{(C) } \frac {64}3 \qquad \textbf{(D) } 16\sqrt {2} \qquad \textbf{(E) } 24$
2014 AMC 12/AHSME, 21
In the figure, $ABCD$ is a square of side length 1. The rectangles $JKHG$ and $EBCF$ are congruent. What is $BE$?
[asy]
unitsize(150);
pair A,B,C,D,E,F,G,H,J,K;
A=(1,0); B=(0,0); C=(0,1); D=(1,1);
draw(A--B--C--D--A);
E=(2-sqrt(3),0); F=(2-sqrt(3),1);
draw(E--F);
G=(1,sqrt(3)/2); H=(2.5-sqrt(3),1);
K=(2-sqrt(3),1-sqrt(3)/2); J=(0.5,0);
draw(G--H--K--J--G);
label("$A$",A,SE);
label("$B$",B,SW);
label("$C$",C,NW);
label("$D$",D,NE);
label("$E$",E,S);
label("$F$",F,N);
label("$G$",G,E);
label("$H$",H,N);
label("$K$",K,W);
label("$J$",J,S);
[/asy]
$ \textbf{(A) }\dfrac{1}{2}(\sqrt{6}-2)\qquad\textbf{(B) }\dfrac{1}{4}\qquad\textbf{(C) }2-\sqrt{3}\qquad\textbf{(D) }\dfrac{\sqrt{3}}{6}\qquad\textbf{(E) }1-\dfrac{\sqrt{2}}{2} $
1983 AIME Problems, 4
A machine-shop cutting tool has the shape of a notched circle, as shown. The radius of the circle is $\sqrt{50}$ cm, the length of $AB$ is 6 cm, and that of $BC$ is 2 cm. The angle $ABC$ is a right angle. Find the square of the distance (in centimeters) from $B$ to the center of the circle.
[asy]
size(150); defaultpen(linewidth(0.65)+fontsize(11));
real r=10;
pair O=(0,0),A=r*dir(45),B=(A.x,A.y-r),C;
path P=circle(O,r);
C=intersectionpoint(B--(B.x+r,B.y),P);
draw(Arc(O, r, 45, 360-17.0312));
draw(A--B--C);dot(A); dot(B); dot(C);
label("$A$",A,NE);
label("$B$",B,SW);
label("$C$",C,SE);
[/asy]
1993 India Regional Mathematical Olympiad, 4
Let $ABCD$ be a rectangle with $AB = a$ and $BC = b$. Suppose $r_1$ is the radius of the circle passing through $A$ and $B$ touching $CD$; and similarly $r_2$ is the radius of the circle passing through $B$ and $C$ and touching $AD$. Show that \[ r_1 + r_2 \geq \frac{5}{8} ( a + b) . \]
1980 AMC 12/AHSME, 7
Sides $AB,BC,CD$ and $DA$ of convex polygon $ABCD$ have lengths 3,4,12, and 13, respectively, and $\measuredangle CBA$ is a right angle. The area of the quadrilateral is
[asy]
size(200);
defaultpen(linewidth(0.7)+fontsize(10));
real r=degrees((12,5)), s=degrees((3,4));
pair D=origin, A=(13,0), C=D+12*dir(r), B=A+3*dir(180-(90-r+s));
draw(A--B--C--D--cycle);
markscalefactor=0.05;
draw(rightanglemark(A,B,C));
pair point=incenter(A,C,D);
label("$A$", A, dir(point--A));
label("$B$", B, dir(point--B));
label("$C$", C, dir(point--C));
label("$D$", D, dir(point--D));
label("$3$", A--B, dir(A--B)*dir(-90));
label("$4$", B--C, dir(B--C)*dir(-90));
label("$12$", C--D, dir(C--D)*dir(-90));
label("$13$", D--A, dir(D--A)*dir(-90));[/asy]
$\text{(A)} \ 32 \qquad \text{(B)} \ 36 \qquad \text{(C)} \ 39 \qquad \text{(D)} \ 42 \qquad \text{(E)} \ 48$
2001 AMC 12/AHSME, 18
A circle centered at $ A$ with a radius of 1 and a circle centered at $ B$ with a radius of 4 are externally tangent. A third circle is tangent to the first two and to one of their common external tangents as shown. The radius of the third circle is
[asy]
size(220);
real r1 = 1;
real r2 = 3;
real r = (r1*r2)/((sqrt(r1)+sqrt(r2))**2);
pair A=(0,r1), B=(2*sqrt(r1*r2),r2);
dot(A); dot(B);
draw( circle(A,r1) );
draw( circle(B,r2) );
draw( (-1.5,0)--(7.5,0) );
draw( A -- (A+dir(210)*r1) );
label("$1$", A -- (A+dir(210)*r1), N );
draw( B -- (B+r2*dir(330)) );
label("$4$", B -- (B+r2*dir(330)), N );
label("$A$",A,dir(330));
label("$B$",B, dir(140));
draw( circle( (2*sqrt(r1*r),r), r ));
[/asy]
$ \displaystyle \textbf{(A)} \ \frac {1}{3} \qquad \textbf{(B)} \ \frac {2}{5} \qquad \textbf{(C)} \ \frac {5}{12} \qquad \textbf{(D)} \ \frac {4}{9} \qquad \textbf{(E)} \ \frac {1}{2}$
2006 AMC 10, 19
A circle of radius 2 is centered at $ O$. Square $ OABC$ has side length 1. Sides $ \overline{AB}$ and $ \overline{CB}$ are extended past $ b$ to meet the circle at $ D$ and $ E$, respectively. What is the area of the shaded region in the figure, which is bounded by $ \overline{BD}$, $ \overline{BE}$, and the minor arc connecting $ D$ and $ E$?
[asy]
defaultpen(linewidth(0.8));
pair O=origin, A=(1,0), C=(0,1), B=(1,1), D=(1, sqrt(3)), E=(sqrt(3), 1), point=B;
fill(Arc(O, 2, 0, 90)--O--cycle, mediumgray);
clip(B--Arc(O, 2, 30, 60)--cycle);
draw(Circle(origin, 2));
draw((-2,0)--(2,0)^^(0,-2)--(0,2));
draw(A--D^^C--E);
label("$A$", A, dir(point--A));
label("$C$", C, dir(point--C));
label("$O$", O, dir(point--O));
label("$D$", D, dir(point--D));
label("$E$", E, dir(point--E));
label("$B$", B, SW);[/asy]
$ \textbf{(A) } \frac {\pi}3 \plus{} 1 \minus{} \sqrt {3} \qquad \textbf{(B) } \frac {\pi}2\left( 2 \minus{} \sqrt {3}\right) \qquad \textbf{(C) } \pi\left(2 \minus{} \sqrt {3}\right) \qquad \textbf{(D) } \frac {\pi}{6} \plus{} \frac {\sqrt {3} \minus{} 1}{2} \\
\qquad \indent \textbf{(E) } \frac {\pi}{3} \minus{} 1 \plus{} \sqrt {3}$
2015 AMC 10, 11
The ratio of the length to the width of a rectangle is $4:3$. If the rectangle has diagonal of length $d$, then the area may be expressed as $kd^2$ for some constant $k$. What is $k$?
$\textbf{(A) }\dfrac27\qquad\textbf{(B) }\dfrac37\qquad\textbf{(C) }\dfrac{12}{25}\qquad\textbf{(D) }\dfrac{16}{25}\qquad\textbf{(E) }\dfrac34$
2013 AMC 12/AHSME, 18
Six spheres of radius $1$ are positioned so that their centers are at the vertices of a regular hexagon of side length $2$. The six spheres are internally tangent to a larger sphere whose center is the center of the hexagon. An eighth sphere is externally tangent to the six smaller spheres and internally tangent to the larger sphere. What is the radius of this eighth sphere?
$ \textbf{(A)} \ \sqrt{2} \qquad \textbf{(B)} \ \frac{3}{2} \qquad \textbf{(C)} \ \frac{5}{3} \qquad \textbf{(D)} \ \sqrt{3} \qquad \textbf{(E)} \ 2$
2011 National Olympiad First Round, 17
Let $D$ be a point inside the equilateral triangle $\triangle ABC$ such that $|AD|=\sqrt{2}, |BD|=3, |CD|=\sqrt{5}$. $m(\widehat{ADB}) = ?$
$\textbf{(A)}\ 120^{\circ} \qquad\textbf{(B)}\ 105^{\circ} \qquad\textbf{(C)}\ 100^{\circ} \qquad\textbf{(D)}\ 95^{\circ} \qquad\textbf{(E)}\ 90^{\circ}$
2012 Turkey Team Selection Test, 2
In a plane, the six different points $A, B, C, A', B', C'$ are given such that triangles $ABC$ and $A'B'C'$ are congruent, i.e. $AB=A'B', BC=B'C', CA=C'A'.$ Let $G$ be the centroid of $ABC$ and $A_1$ be an intersection point of the circle with diameter $AA'$ and the circle with center $A'$ and passing through $G.$ Define $B_1$ and $C_1$ similarly. Prove that
\[ AA_1^2+BB_1^2+CC_1^2 \leq AB^2+BC^2+CA^2 \]
2014 Harvard-MIT Mathematics Tournament, 1
Let $O_1$ and $O_2$ be concentric circles with radii 4 and 6, respectively. A chord $AB$ is drawn in $O_1$ with length $2$. Extend $AB$ to intersect $O_2$ in points $C$ and $D$. Find $CD$.