Found problems: 1148
2013 Online Math Open Problems, 41
While there do not exist pairwise distinct real numbers $a,b,c$ satisfying $a^2+b^2+c^2 = ab+bc+ca$, there do exist complex numbers with that property. Let $a,b,c$ be complex numbers such that $a^2+b^2+c^2 = ab+bc+ca$ and $|a+b+c| = 21$. Given that $|a-b| = 2\sqrt{3}$, $|a| = 3\sqrt{3}$, compute $|b|^2+|c|^2$.
[hide="Clarifications"]
[list]
[*] The problem should read $|a+b+c| = 21$. An earlier version of the test read $|a+b+c| = 7$; that value is incorrect.
[*] $|b|^2+|c|^2$ should be a positive integer, not a fraction; an earlier version of the test read ``... for relatively prime positive integers $m$ and $n$. Find $m+n$.''[/list][/hide]
[i]Ray Li[/i]
2009 Princeton University Math Competition, 1
If $\phi$ is the Golden Ratio, we know that $\frac1\phi = \phi - 1$. Define a new positive real number, called $\phi_d$, where $\frac1{\phi_d} = \phi_d - d$ (so $\phi = \phi_1$). Given that $\phi_{2009} = \frac{a + \sqrt{b}}{c}$, $a, b, c$ positive integers, and the greatest common divisor of $a$ and $c$ is 1, find $a + b + c$.
1991 India Regional Mathematical Olympiad, 6
Find all integer values of $a$ such that the quadratic expression $(x+a)(x+1991) +1$ can be factored as a product $(x+b)(x+c)$ where $b,c$ are integers.
1987 IMO Longlists, 69
Let $n\ge2$ be an integer. Prove that if $k^2+k+n$ is prime for all integers $k$ such that $0\le k\le\sqrt{n\over3}$, then $k^2+k+n$ is prime for all integers $k$ such that $0\le k\le n-2$.[i](IMO Problem 6)[/i]
[b][i]Original Formulation[/i][/b]
Let $f(x) = x^2 + x + p$, $p \in \mathbb N.$ Prove that if the numbers $f(0), f(1), \cdots , f(\sqrt{p\over 3} )$ are primes, then all the numbers $f(0), f(1), \cdots , f(p - 2)$ are primes.
[i]Proposed by Soviet Union. [/i]
1986 China Team Selection Test, 3
Let $x_i,$ $1 \leq i \leq n$ be real numbers with $n \geq 3.$ Let $p$ and $q$ be their symmetric sum of degree $1$ and $2$ respectively. Prove that:
i) $p^2 \cdot \frac{n-1}{n}-2q \geq 0$
ii) $\left|x_i - \frac{p}{n}\right| \leq \sqrt{p^2 - \frac{2nq}{n-1}} \cdot \frac{n-1}{n}$ for every meaningful $i$.
2003 China Team Selection Test, 2
Positive integer $n$ cannot be divided by $2$ and $3$, there are no nonnegative integers $a$ and $b$ such that $|2^a-3^b|=n$. Find the minimum value of $n$.
1970 Miklós Schweitzer, 4
If $ c$ is a positive integer and $ p$ is an odd prime, what is the smallest residue (in absolute value) of \[ \sum_{n=0}^{\frac{p-1}{2}} \binom{2n}{n}c^n \;(\textrm{mod}\;p\ ) \ ?\]
J. Suranyi
2013 NIMO Problems, 2
Let $f$ be a non-constant polynomial such that \[ f(x-1) + f(x) + f(x+1) = \frac {f(x)^2}{2013x} \] for all nonzero real numbers $x$. Find the sum of all possible values of $f(1)$.
[i]Proposed by Ahaan S. Rungta[/i]
2007 Brazil National Olympiad, 2
Find the number of integers $ c$ such that $ \minus{}2007 \leq c \leq 2007$ and there exists an integer $ x$ such that $ x^2 \plus{} c$ is a multiple of $ 2^{2007}$.
1997 India National Olympiad, 2
Show that there do not exist positive integers $m$ and $n$ such that \[ \dfrac{m}{n} + \dfrac{n+1}{m} = 4 . \]
2014 India IMO Training Camp, 1
Let $x$ and $y$ be rational numbers, such that $x^{5}+y^{5}=2x^{2}y^{2}$. Prove that $1-xy$ is the square of a rational number.
1986 Bulgaria National Olympiad, Problem 2
Let $f(x)$ be a quadratic polynomial with two real roots in the interval $[-1,1]$. Prove that if the maximum value of $|f(x)|$ in the interval $[-1,1]$ is equal to $1$, then the maximum value of $|f'(x)|$ in the interval $[-1,1]$ is not less than $1$.
1983 AMC 12/AHSME, 1
If $x \neq 0$, $\frac x{2} = y^2$ and $\frac{x}{4} = 4y$, then $x$ equals
$ \textbf{(A)}\ 8\qquad\textbf{(B)}\ 16\qquad\textbf{(C)}\ 32\qquad\textbf{(D)}\ 64\qquad\textbf{(E)}\ 128 $
2005 India Regional Mathematical Olympiad, 7
Let $a,b,c$ be three positive real numbers such that $a+ b +c =1$.
Let $\lambda = min \{ a^3 + a^2bc , b^3 + b^2 ac , c^3 + ab c^2 \}$
Prove that the roots of $x^2 + x + 4 \lambda = 0$ are real.
1959 AMC 12/AHSME, 16
The expression $\frac{x^2-3x+2}{x^2-5x+6}\div \frac{x^2-5x+4}{x^2-7x+12}$, when simplified is:
$ \textbf{(A)}\ \frac{(x-1)(x-6)}{(x-3)(x-4)} \qquad\textbf{(B)}\ \frac{x+3}{x-3}\qquad\textbf{(C)}\ \frac{x+1}{x-1}\qquad\textbf{(D)}\ 1\qquad\textbf{(E)}\ 2$
2003 Brazil National Olympiad, 1
Find the smallest positive prime that divides $n^2 + 5n + 23$ for some integer $n$.
2012 India IMO Training Camp, 2
Let $a\ge b$ and $c\ge d$ be real numbers. Prove that the equation
\[(x+a)(x+d)+(x+b)(x+c)=0\]
has real roots.
2004 Uzbekistan National Olympiad, 2
Lenth of a right angle triangle sides are posive integer. Prove that double area of the triangle divides 12.
1988 China Team Selection Test, 1
Suppose real numbers $A,B,C$ such that for all real numbers $x,y,z$ the following inequality holds:
\[A(x-y)(x-z) + B(y-z)(y-x) + C(z-x)(z-y) \geq 0.\]
Find the necessary and sufficient condition $A,B,C$ must satisfy (expressed by means of an equality or an inequality).
2007 ITest, 18
Suppose that $x^3+px^2+qx+r$ is a cubic with a double root at $a$ and another root at $b$, where $a$ and $b$ are real numbers. If $p=-6$ and $q=9$, what is $r$?
$\textbf{(A) }0\hspace{20.2em}\textbf{(B) }4$
$\textbf{(C) }108\hspace{19.3em}\textbf{(D) }\text{It could be 0 or 4.}$
$\textbf{(E) }\text{It could be 0 or 108.}\hspace{12em}\textbf{(F) }18$
$\textbf{(G) }-4\hspace{19em}\textbf{(H) } -108$
$\textbf{(I) }\text{It could be 0 or }-4.\hspace{12em}\textbf{(J) }\text{It could be 0 or }-108.$
$\textbf{(K) }\text{It could be 4 or }-4.\hspace{11.5em}\textbf{(L) }\text{There is no such value of }r.$
$\textbf{(M) }1\hspace{20em}\textbf{(N) }-2$
$\textbf{(O) }\text{It could be }-2\text{ or }-4.\hspace{10.3em}\textbf{(P) }\text{It could be 0 or }-2.$
$\textbf{(Q) }\text{It could be 2007 or a yippy dog.}\hspace{6.6em}\textbf{(R) }2007$
1962 AMC 12/AHSME, 21
It is given that one root of $ 2x^2 \plus{} rx \plus{} s \equal{} 0$, with $ r$ and $ s$ real numbers, is $ 3\plus{}2i (i \equal{} \sqrt{\minus{}1})$. The value of $ s$ is:
$ \textbf{(A)}\ \text{undetermined} \qquad
\textbf{(B)}\ 5 \qquad
\textbf{(C)}\ 6 \qquad
\textbf{(D)}\ \minus{}13 \qquad
\textbf{(E)}\ 26$
2004 Romania Team Selection Test, 6
Let $a,b$ be two positive integers, such that $ab\neq 1$. Find all the integer values that $f(a,b)$ can take, where \[ f(a,b) = \frac { a^2+ab+b^2} { ab- 1} . \]
2007 Federal Competition For Advanced Students, Part 1, 1
In a quadratic table with $ 2007$ rows and $ 2007$ columns is an odd number written in each field.
For $ 1\leq i\leq2007$ is $ Z_i$ the sum of the numbers in the $ i$-th row and for $ 1\leq j\leq2007$ is $ S_j$ the sum of the numbers in the $ j$-th column.
$ A$ is the product of all $ Z_i$ and $ B$ the product of all $ S_j$.
Show that $ A\plus{}B\neq0$
1994 USAMO, 2
The sides of a 99-gon are initially colored so that consecutive sides are red, blue, red, blue, $\,\ldots, \,$ red, blue, yellow. We make a sequence of modifications in the coloring, changing the color of one side at a time to one of the three given colors (red, blue, yellow), under the constraint that no two adjacent sides may be the same color. By making a sequence of such modifications, is it possible to arrive at the coloring in which consecutive sides
are red, blue, red, blue, red, blue, $\, \ldots, \,$ red, yellow, blue?
2001 Stanford Mathematics Tournament, 4
For what values of $a$ does the system of equations
\[x^2 = y^2,(x-a)^2 +y^2 = 1\]have exactly 2 solutions?