This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1148

1990 India National Olympiad, 2

Determine all non-negative integral pairs $ (x, y)$ for which \[ (xy \minus{} 7)^2 \equal{} x^2 \plus{} y^2.\]

1994 All-Russian Olympiad Regional Round, 10.2

Tags: algebra , quadratic
The equation $ x^2 \plus{} ax \plus{} b \equal{} 0$ has two distinct real roots. Prove that the equation $ x^4 \plus{} ax^3 \plus{} (b \minus{} 2)x^2 \minus{} ax \plus{} 1 \equal{} 0$ has four distinct real roots.

2010 All-Russian Olympiad Regional Round, 9.8

For every positive integer $n$, let $S_n$ be the sum of the first $n$ prime numbers: $S_1 = 2, S_2 = 2 + 3 = 5, S_3 = 2 + 3 + 5 = 10$, etc. Can both $S_n$ and $S_{n+1}$ be perfect squares?

2016 Middle European Mathematical Olympiad, 1

Find all triples $(a, b, c)$ of real numbers such that $$ a^2 + ab + c = 0, $$ $$b^2 + bc + a = 0, $$ $$c^2 + ca + b = 0.$$

2020 Latvia Baltic Way TST, 4

Given cubic polynomial with integer coefficients and three irrational roots. Show that none of these roots can be root of quadratic equation with integer coefficients.

1977 AMC 12/AHSME, 23

If the solutions of the equation $x^2+px+q=0$ are the cubes of the solutions of the equation $x^2+mx+n=0$, then $\textbf{(A) }p=m^3+3mn\qquad\textbf{(B) }p=m^3-3mn\qquad$ $\textbf{(C) }p+q=m^3\qquad\textbf{(D) }\left(\frac{m}{n}\right)^2=\frac{p}{q}\qquad \textbf{(E) }\text{none of these}$

2006 Federal Math Competition of S&M, Problem 1

Suppose $a,b,c,A,B,C$ are real numbers with $a\ne0$ and $A\ne0$ such that for all $x$, $$\left|ax^2+bx+c\right|\le\left|Ax^2+Bx+C\right|.$$Prove that $$\left|b^2-4ac\right|\le\left|B^2-4AC\right|.$$

2008 Czech-Polish-Slovak Match, 3

Find all primes $p$ such that the expression \[\binom{p}1^2+\binom{p}2^2+\cdots+\binom{p}{p-1}^2\] is divisible by $p^3$.

2013 AIME Problems, 3

Let $ABCD$ be a square, and let $E$ and $F$ be points on $\overline{AB}$ and $\overline{BC}$, respectively. The line through $E$ parallel to $\overline{BC}$ and the line through $F$ parallel to $\overline{AB}$ divide $ABCD$ into two squares and two non square rectangles. The sum of the areas of the two squares is $\frac{9}{10}$ of the area of square $ABCD$. Find $\frac{AE}{EB} + \frac{EB}{AE}$.

PEN A Problems, 7

Let $n$ be a positive integer such that $2+2\sqrt{28n^2 +1}$ is an integer. Show that $2+2\sqrt{28n^2 +1}$ is the square of an integer.

2011 ELMO Problems, 5

Let $p>13$ be a prime of the form $2q+1$, where $q$ is prime. Find the number of ordered pairs of integers $(m,n)$ such that $0\le m<n<p-1$ and \[3^m+(-12)^m\equiv 3^n+(-12)^n\pmod{p}.\] [i]Alex Zhu.[/i] [hide="Note"]The original version asked for the number of solutions to $2^m+3^m\equiv 2^n+3^n\pmod{p}$ (still $0\le m<n<p-1$), where $p$ is a Fermat prime.[/hide]

1991 AIME Problems, 7

Find $A^2$, where $A$ is the sum of the absolute values of all roots of the following equation: \begin{eqnarray*}x &=& \sqrt{19} + \frac{91}{{\displaystyle \sqrt{19}+\frac{91}{{\displaystyle \sqrt{19}+\frac{91}{{\displaystyle \sqrt{19}+\frac{91}{{\displaystyle \sqrt{19}+\frac{91}{x}}}}}}}}}\end{eqnarray*}

1995 AIME Problems, 2

Find the last three digits of the product of the positive roots of \[ \sqrt{1995}x^{\log_{1995}x}=x^2. \]

PEN O Problems, 45

Find all positive integers $n$ with the property that the set \[\{n,n+1,n+2,n+3,n+4,n+5\}\] can be partitioned into two sets such that the product of the numbers in one set equals the product of the numbers in the other set.

2007 India National Olympiad, 3

Let $ m$ and $ n$ be positive integers such that $ x^2 \minus{} mx \plus{}n \equal{} 0$ has real roots $ \alpha$ and $ \beta$. Prove that $ \alpha$ and $ \beta$ are integers [b]if and only if[/b] $ [m\alpha] \plus{} [m\beta]$ is the square of an integer. (Here $ [x]$ denotes the largest integer not exceeding $ x$)

2012 District Olympiad, 2

Let $(A,+,\cdot)$ a 9 elements ring. Prove that the following assertions are equivalent: (a) For any $x\in A\backslash\{0\}$ there are two numbers $a\in \{-1,0,1\}$ and $b\in \{-1,1\}$ such that $x^2+ax+b=0$. (b) $(A,+,\cdot)$ is a field.

2007 Bulgarian Autumn Math Competition, Problem 10.1

Find all integers $b$ and $c$ for which the equation $x^2-bx+c=0$ has two real roots $x_{1}$ and $x_{2}$ satisfying $x_{1}^2+x_{2}^2=5$.

1971 Canada National Olympiad, 2

Tags: quadratic
Let $x$ and $y$ be positive real numbers such that $x+y=1$. Show that \[ \left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\ge 9. \]

2018 CMIMC Individual Finals, 3

Tags: quadratic
Determine the number of integers $a$ with $1\leq a\leq 1007$ and the property that both $a$ and $a+1$ are quadratic residues mod $1009$.

2009 Indonesia TST, 1

Find the smallest odd integer $ k$ such that: for every $ 3\minus{}$degree polynomials $ f$ with integer coefficients, if there exist $ k$ integer $ n$ such that $ |f(n)|$ is a prime number, then $ f$ is irreducible in $ \mathbb{Z}[n]$.

1951 AMC 12/AHSME, 16

If in applying the quadratic formula to a quadratic equation \[ f(x)\equiv ax^2 \plus{} bx \plus{} c \equal{} 0, \] it happens that $ c \equal{} \frac {b^2}{4a}$, then the graph of $ y \equal{} f(x)$ will certainly: $ \textbf{(A)}\ \text{have a maximum} \qquad\textbf{(B)}\ \text{have a minimum} \qquad\textbf{(C)}\ \text{be tangent to the x \minus{} axis} \\ \qquad\textbf{(D)}\ \text{be tangent to the y \minus{} axis} \qquad\textbf{(E)}\ \text{lie in one quadrant only}$

2007 All-Russian Olympiad, 1

Given reals numbers $a$, $b$, $c$. Prove that at least one of three equations $x^{2}+(a-b)x+(b-c)=0$, $x^{2}+(b-c)x+(c-a)=0$, $x^{2}+(c-a)x+(a-b)=0$ has a real root. [i]O. Podlipsky[/i]

2009 Princeton University Math Competition, 2

Given that $P(x)$ is the least degree polynomial with rational coefficients such that \[P(\sqrt{2} + \sqrt{3}) = \sqrt{2},\] find $P(10)$.

2008 AMC 10, 20

The faces of a cubical die are marked with the numbers $ 1$, $ 2$, $ 2$, $ 3$, $ 3$, and $ 4$. The faces of a second cubical die are marked with the numbers $ 1$, $ 3$, $ 4$, $ 5$, $ 6$, and $ 8$. Both dice are thrown. What is the probability that the sum of the two top numbers will be $ 5$, $ 7$, or $ 9$ ? $ \textbf{(A)}\ \frac {5}{18} \qquad \textbf{(B)}\ \frac {7}{18} \qquad \textbf{(C)}\ \frac {11}{18} \qquad \textbf{(D)}\ \frac {3}{4} \qquad \textbf{(E)}\ \frac {8}{9}$

2005 Tournament of Towns, 4

For any function $f(x)$, define $f^1(x) = f(x)$ and $f^n (x) = f(f^{n-1}(x))$ for any integer $n \ge 2$. Does there exist a quadratic polynomial $f(x)$ such that the equation $f^n(x) = 0$ has exactly $2^n$ distinct real roots for every positive integer $n$? [i](6 points)[/i]