This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 107

2006 Cezar Ivănescu, 1

Let be two quadrilaterals $ ABCD,A'B'C'D' $ with $ AB,BC,CD,AC,BD $ being perpendicular to $ A'B',B'C',C'D',A'C',B'D', $ respectively. Show that $ AD $ is perpendicular to $ A'D'. $

2014 German National Olympiad, 6

Let $ABCD$ be a circumscribed quadrilateral and $M$ the centre of the incircle. There are points $P$ and $Q$ on the lines $MA$ and $MC$ such that $\angle CBA= 2\angle QBP.$ Prove that $\angle ADC = 2 \angle PDQ.$

2011 Indonesia TST, 3

Circle $\omega$ is inscribed in quadrilateral $ABCD$ such that $AB$ and $CD$ are not parallel and intersect at point $O.$ Circle $\omega_1$ touches the side $BC$ at $K$ and touches line $AB$ and $CD$ at points which are located outside quadrilateral $ABCD;$ circle $\omega_2$ touches side $AD$ at $L$ and touches line $AB$ and $CD$ at points which are located outside quadrilateral $ABCD.$ If $O,K,$ and $L$ are collinear$,$ then show that the midpoint of side $BC,AD,$ and the center of circle $\omega$ are also collinear.

2016 Iranian Geometry Olympiad, 5

Let $ABCD$ be a convex quadrilateral with these properties: $\angle ADC = 135^o$ and $\angle ADB - \angle ABD = 2\angle DAB = 4\angle CBD$. If $BC = \sqrt2 CD$ , prove that $AB = BC + AD$. by Mahdi Etesami Fard

1994 Chile National Olympiad, 6

On a sheet of transparent paper, draw a quadrilateral with Chinese ink, which is illuminated with a lamp. Show that it is always possible to locate the sheet in such a way that the shadow projected on the desk is a parallelogram.

2017 Junior Regional Olympiad - FBH, 2

In quadrilateral $ABCD$ holds $AB=6$, $AD=4$, $\angle DAB=\angle ABC = 60^{\circ}$ and $\angle ADC = 90^{\circ}$. Find length of diagonals and area of the quadrilateral

2019 Oral Moscow Geometry Olympiad, 2

The angles of one quadrilateral are equal to the angles another quadrilateral. In addition, the corresponding angles between their diagonals are equal. Are these quadrilaterals necessarily similar?