This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1679

2008 District Olympiad, 4

Let $ ABCD$ be a cyclic quadrilater. Denote $ P\equal{}AD\cap BC$ and $ Q\equal{}AB \cap CD$. Let $ E$ be the fourth vertex of the parallelogram $ ABCE$ and $ F\equal{}CE\cap PQ$. Prove that $ D,E,F$ and $ Q$ lie on the same circle.

2009 Thailand Mathematical Olympiad, 6

Tags: geometry , ratio
Let $\vartriangle ABC$ be a triangle with $AB > AC$, its incircle is tangent to $BC$ at $D$. Let $DE$ be a diameter of the incircle, and let $F$ be the intersection between line $AE$ and side $BC$. Find the ratio between the areas of $\vartriangle DEF$ and $\vartriangle ABC$ in terms of the three side lengths of$\vartriangle ABC$.

1984 IMO Longlists, 35

Prove that there exist distinct natural numbers $m_1,m_2, \cdots , m_k$ satisfying the conditions \[\pi^{-1984}<25-\left(\frac{1}{m_1}+\frac{1}{m_2}+\cdots+\frac{1}{m_k}\right)<\pi^{-1960}\] where $\pi$ is the ratio between a circle and its diameter.

2013 Iran Team Selection Test, 13

$P$ is an arbitrary point inside acute triangle $ABC$. Let $A_1,B_1,C_1$ be the reflections of point $P$ with respect to sides $BC,CA,AB$. Prove that the centroid of triangle $A_1B_1C_1$ lies inside triangle $ABC$.

2005 Alexandru Myller, 4

Let $(a_n)_n$ be a sequence of positive irational numbers. a) Prove that for every $n\in\mathbb N^*$, the binomial development $(1+a_n)^n$ admits a unique maximum term and determine its rank $r_n\in\{1,2,\ldots,n+1\}$. b) We consider the sequences $x_n=a_n\sqrt n, n\in\mathbb N^*$ and $y_n=(1+a_n)^{r_n}, n\in\mathbb N^*$. Prove that $(x_n)_n$ is convergent if and only if the sequence $(y_n)_n$ is convergent. [i]Eugen Paltanea[/i]

2003 Junior Balkan Team Selection Tests - Moldova, 3

Tags: diagonal , ratio , area , geometry
The quadrilateral $ABCD$ with perpendicular diagonals is inscribed in the circle with center $O$, the points $M,N$ are the midpoints of $[BC]$ and $[CD]$ respectively. Find the ratio of areas of the figures $OMCN$ and $ABCD$

1999 IMO Shortlist, 2

Prove that every positive rational number can be represented in the form $\dfrac{a^{3}+b^{3}}{c^{3}+d^{3}}$ where a,b,c,d are positive integers.

2020 BMT Fall, 23

Tags: diameter , ratio , geometry
Circle $\Gamma$ has radius $10$, center $O$, and diameter $AB$. Point $C$ lies on $\Gamma$ such that $AC = 12$. Let $P$ be the circumcenter of $\vartriangle AOC$. Line $AP$ intersects $\Gamma$ at $Q$, where $Q$ is different from $A$. Then the value of $\frac{AP}{AQ}$ can be expressed in the form $\frac{m}{n}$, where m and n are relatively prime positive integers. Compute $m + n$.

2012 AMC 8, 1

Tags: ratio , algebra
Rachelle uses 3 pounds of meat to make 8 hamburgers for her family. How many pounds of meat does she need to make 24 hamburgers for a neighborhood picnic? $\textbf{(A)}\hspace{.05in}6 \qquad \textbf{(B)}\hspace{.05in}6\dfrac23 \qquad \textbf{(C)}\hspace{.05in}7\dfrac12 \qquad \textbf{(D)}\hspace{.05in}8 \qquad \textbf{(E)}\hspace{.05in}9 $

2009 Indonesia MO, 3

Tags: geometry , ratio
For every triangle $ ABC$, let $ D,E,F$ be a point located on segment $ BC,CA,AB$, respectively. Let $ P$ be the intersection of $ AD$ and $ EF$. Prove that: \[ \frac{AB}{AF}\times DC\plus{}\frac{AC}{AE}\times DB\equal{}\frac{AD}{AP}\times BC\]

2007 Iran MO (3rd Round), 3

Tags: geometry , ratio
We call a set $ A$ a good set if it has the following properties: 1. $ A$ consists circles in plane. 2. No two element of $ A$ intersect. Let $ A,B$ be two good sets. We say $ A,B$ are equivalent if we can reach from $ A$ to $ B$ by moving circles in $ A$, making them bigger or smaller in such a way that during these operations each circle does not intersect with other circles. Let $ a_{n}$ be the number of inequivalent good subsets with $ n$ elements. For example $ a_{1}\equal{} 1,a_{2}\equal{} 2,a_{3}\equal{} 4,a_{4}\equal{} 9$. [img]http://i5.tinypic.com/4r0x81v.png[/img] If there exist $ a,b$ such that $ Aa^{n}\leq a_{n}\leq Bb^{n}$, we say growth ratio of $ a_{n}$ is larger than $ a$ and is smaller than $ b$. a) Prove that growth ratio of $ a_{n}$ is larger than 2 and is smaller than 4. b) Find better bounds for upper and lower growth ratio of $ a_{n}$.

1976 IMO Longlists, 27

Tags: geometry , ratio
In a plane three points $P,Q,R,$ not on a line, are given. Let $k, l, m$ be positive numbers. Construct a triangle $ABC$ whose sides pass through $P, Q,$ and $R$ such that $P$ divides the segment $AB$ in the ratio $1 : k$, $Q$ divides the segment $BC$ in the ratio $1 : l$, and $R$ divides the segment $CA$ in the ratio $1 : m.$

2007 Olympic Revenge, 3

Tags: geometry , ratio
The triangles $BCD$ and $ACE$ are externally constructed to sides $BC$ and $CA$ of a triangle $ABC$ such that $AE = BD$ and $\angle BDC+\angle AEC = 180^\circ$. Let $F$ be a point on segment $AB$ such that ${AF\over FB}={CD\over CE}$. Prove that ${DE\over CD+CE}={EF\over BC}={FD\over AC}$.

2002 Mongolian Mathematical Olympiad, Problem 6

Tags: geometry , ratio
Let $A_1,B_1,C_1$ be the midpoints of the sides $BC,CA,AB$ respectively of a triangle $ABC$. Points $K$ on segment $C_1A_1$ and $L$ on segment $A_1B_1$ are taken such that $$\frac{C_1K}{KA_1}=\frac{BC+AC}{AC+AB}\enspace\enspace\text{and}\enspace\enspace\frac{A_1L}{LB_1}=\frac{AC+AB}{BC+AB}.$$If $BK$ and $CL$ meet at $S$, prove that $\angle C_1A_1S=\angle B_1A_1S$.

2011 Turkey Team Selection Test, 1

Let $K$ be a point in the interior of an acute triangle $ABC$ and $ARBPCQ$ be a convex hexagon whose vertices lie on the circumcircle $\Gamma$ of the triangle $ABC.$ Let $A_1$ be the second point where the circle passing through $K$ and tangent to $\Gamma$ at $A$ intersects the line $AP.$ The points $B_1$ and $C_1$ are defined similarly. Prove that \[ \min\left\{\frac{PA_1}{AA_1}, \: \frac{QB_1}{BB_1}, \: \frac{RC_1}{CC_1}\right\} \leq 1.\]

2010 AMC 10, 19

Equiangular hexagon $ ABCDEF$ has side lengths $ AB \equal{} CD \equal{} EF \equal{} 1$ and $ BC \equal{} DE \equal{} FA \equal{} r$. The area of $ \triangle ACE$ is $70\%$ of the area of the hexagon. What is the sum of all possible values of $ r$? $ \textbf{(A)}\ \frac {4\sqrt {3}}{3} \qquad \textbf{(B)}\ \frac {10}{3} \qquad \textbf{(C)}\ 4 \qquad \textbf{(D)}\ \frac {17}{4} \qquad \textbf{(E)}\ 6$

2006 Stanford Mathematics Tournament, 6

The expression $16^n+4^n+1$ is equiavalent to the expression $(2^{p(n)}-1)/(2^{q(n)}-1)$ for all positive integers $n>1$ where $p(n)$ and $q(n)$ are functions and $\tfrac{p(n)}{q(n)}$ is constant. Find $p(2006)-q(2006)$.

2008 AMC 10, 6

Tags: ratio
Points $ B$ and $ C$ lie on $ \overline{AD}$. The length of $ \overline{AB}$ is $ 4$ times the length of $ \overline{BD}$, and the length of $ \overline{AC}$ is $ 9$ times the length of $ \overline{CD}$. The length of $ \overline{BC}$ is what fraction of the length of $ \overline{AD}$? $ \textbf{(A)}\ \frac{1}{36} \qquad \textbf{(B)}\ \frac{1}{13} \qquad \textbf{(C)}\ \frac{1}{10} \qquad \textbf{(D)}\ \frac{5}{36} \qquad \textbf{(E)}\ \frac{1}{5}$

1962 AMC 12/AHSME, 5

Tags: ratio
If the radius of a circle is increased by $ 1$ unit, the ratio of the new circumference to the new diameter is: $ \textbf{(A)}\ \pi \plus{} 2 \qquad \textbf{(B)}\ \frac{2 \pi \plus{} 1}{2} \qquad \textbf{(C)}\ \pi \qquad \textbf{(D)}\ \frac{2 \pi \minus{} 1}{2} \qquad \textbf{(E)}\ \pi \minus{} 2$

2008 China Team Selection Test, 1

Let $ ABC$ be an acute triangle, let $ M,N$ be the midpoints of minor arcs $ \widehat{CA},\widehat{AB}$ of the circumcircle of triangle $ ABC,$ point $ D$ is the midpoint of segment $ MN,$ point $ G$ lies on minor arc $ \widehat{BC}.$ Denote by $ I,I_{1},I_{2}$ the incenters of triangle $ ABC,ABG,ACG$ respectively.Let $ P$ be the second intersection of the circumcircle of triangle $ GI_{1}I_{2}$ with the circumcircle of triangle $ ABC.$ Prove that three points $ D,I,P$ are collinear.

2020 Candian MO, 3#

okay this one is from Prof. Mircea Lascu from Zalau, Romaniaand Prof. V. Cartoaje from Ploiesti, Romania. It goes like this: given being a triangle ABC for every point M inside we construct the points A[size=67]M[/size], B[size=67]M[/size], C[size=67]M[/size] on the circumcircle of the triangle ABC such that A, A[size=67]M[/size], M are collinear and so on. Find the locus of these points M for which the area of the triangle A[size=67]M[/size] B[size=67]M[/size] C[size=67]M[/size] is bigger than the area of the triangle ABC.

1952 Miklós Schweitzer, 6

Let $ 2n$ distinct points on a circle be given. Arrange them into disjoint pairs in an arbitrary way and join the couples by chords. Determine the probability that no two of these $ n$ chords intersect. (All possible arrangement into pairs are supposed to have the same probability.)

2010 Contests, 1

$ABC$ is an acute angle triangle such that $AB>AC$ and $\hat{BAC}=60^{\circ}$. Let's denote by $O$ the center of the circumscribed circle of the triangle and $H$ the intersection of altitudes of this triangle. Line $OH$ intersects $AB$ in point $P$ and $AC$ in point $Q$. Find the value of the ration $\frac{PO}{HQ}$.

2006 AMC 12/AHSME, 17

For a particular peculiar pair of dice, the probabilities of rolling 1, 2, 3, 4, 5 and 6 on each die are in the ratio $ 1: 2: 3: 4: 5: 6$. What is the probability of rolling a total of 7 on the two dice? $ \textbf{(A) } \frac 4{63} \qquad \textbf{(B) } \frac 18 \qquad \textbf{(C) } \frac 8{63} \qquad \textbf{(D) } \frac 16 \qquad \textbf{(E) } \frac 27$

2017 Yasinsky Geometry Olympiad, 6

In the triangle $ABC$ , the angle bisector $AD$ divides the side $BC$ into the ratio $BD: DC = 2: 1$. In what ratio, does the median $CE$ divide this bisector?