This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 61

1956 Putnam, A6

i) A transformation of the plane into itself preserves all rational distances. Prove that it preserves all distances. ii) Show that the corresponding statement for the line is false.

PEN F Problems, 4

Suppose that $\tan \alpha =\frac{p}{q}$, where $p$ and $q$ are integers and $q \neq 0$. Prove the number $\tan \beta$ for which $\tan 2\beta =\tan 3\alpha$ is rational only when $p^2 +q^2$ is the square of an integer.

2016 Postal Coaching, 1

Show that there are infinitely many rational triples $(a, b, c)$ such that $$a + b + c = abc = 6.$$

PEN F Problems, 2

Find all $x$ and $y$ which are rational multiples of $\pi$ with $0<x<y<\frac{\pi}{2}$ and $\tan x+\tan y =2$.

2019 Poland - Second Round, 3

Let $f(t)=t^3+t$. Decide if there exist rational numbers $x, y$ and positive integers $m, n$ such that $xy=3$ and: \begin{align*} \underbrace{f(f(\ldots f(f}_{m \ times}(x))\ldots)) = \underbrace{f(f(\ldots f(f}_{n \ times}(y))\ldots)). \end{align*}

2019 Brazil Team Selection Test, 2

Given any set $S$ of positive integers, show that at least one of the following two assertions holds: (1) There exist distinct finite subsets $F$ and $G$ of $S$ such that $\sum_{x\in F}1/x=\sum_{x\in G}1/x$; (2) There exists a positive rational number $r<1$ such that $\sum_{x\in F}1/x\neq r$ for all finite subsets $F$ of $S$.

2004 Finnish National High School Mathematics Competition, 2

$a, b$ and $c$ are positive integers and \[\frac{a\sqrt{3} + b}{b\sqrt{3} + c}\] is a rational number. Show that \[\frac{a^2 + b^2 + c^2}{a + b + c}\] is an integer.

1967 IMO Longlists, 18

If $x$ is a positive rational number show that $x$ can be uniquely expressed in the form $x = \sum^n_{k=1} \frac{a_k}{k!}$ where $a_1, a_2, \ldots$ are integers, $0 \leq a_n \leq n - 1$, for $n > 1,$ and the series terminates. Show that $x$ can be expressed as the sum of reciprocals of different integers, each of which is greater than $10^6.$

2019 Taiwan TST Round 2, 1

Given any set $S$ of positive integers, show that at least one of the following two assertions holds: (1) There exist distinct finite subsets $F$ and $G$ of $S$ such that $\sum_{x\in F}1/x=\sum_{x\in G}1/x$; (2) There exists a positive rational number $r<1$ such that $\sum_{x\in F}1/x\neq r$ for all finite subsets $F$ of $S$.

Russian TST 2019, P2

Given any set $S$ of positive integers, show that at least one of the following two assertions holds: (1) There exist distinct finite subsets $F$ and $G$ of $S$ such that $\sum_{x\in F}1/x=\sum_{x\in G}1/x$; (2) There exists a positive rational number $r<1$ such that $\sum_{x\in F}1/x\neq r$ for all finite subsets $F$ of $S$.

2017 Brazil National Olympiad, 1.

[b]1.[/b] For each real number $r$ between $0$ and $1$ we can represent $r$ as an infinite decimal $r = 0.r_1r_2r_3\dots$ with $0 \leq r_i \leq 9$. For example, $\frac{1}{4} = 0.25000\dots$, $\frac{1}{3} = 0.333\dots$ and $\frac{1}{\sqrt{2}} = 0.707106\dots$. a) Show that we can choose two rational numbers $p$ and $q$ between $0$ and $1$ such that, from their decimal representations $p = 0.p_1p_2p_3\dots$ and $q = 0.q_1q_2q_3\dots$, it's possible to construct an irrational number $\alpha = 0.a_1a_2a_3\dots$ such that, for each $i = 1, 2, 3, \dots$, we have $a_i = p_1$ or $a_1 = q_i$. b) Show that there's a rational number $s = 0.s_1s_2s_3\dots$ and an irrational number $\beta = 0.b_1b_2b_3\dots$ such that, for all $N \geq 2017$, the number of indexes $1 \leq i \leq N$ satisfying $s_i \neq b_i$ is less than or equal to $\frac{N}{2017}$.

PEN F Problems, 5

Prove that there is no positive rational number $x$ such that \[x^{\lfloor x\rfloor }=\frac{9}{2}.\]

1990 IMO Shortlist, 28

Prove that on the coordinate plane it is impossible to draw a closed broken line such that [i](i)[/i] the coordinates of each vertex are rational; [i](ii)[/i] the length each of its edges is 1; [i](iii)[/i] the line has an odd number of vertices.

Russian TST 2017, P2

Prove that every rational number is representable as $x^4+y^4-z^4-t^4$ with rational $x,y,z,t$.

2019 India IMO Training Camp, P1

Given any set $S$ of positive integers, show that at least one of the following two assertions holds: (1) There exist distinct finite subsets $F$ and $G$ of $S$ such that $\sum_{x\in F}1/x=\sum_{x\in G}1/x$; (2) There exists a positive rational number $r<1$ such that $\sum_{x\in F}1/x\neq r$ for all finite subsets $F$ of $S$.

2019 India Regional Mathematical Olympiad, 1

Suppose $x$ is a non zero real number such that both $x^5$ and $20x+\frac{19}{x}$ are rational numbers. Prove that $x$ is a rational number.

2017 Peru MO (ONEM), 3

The infinity sequence $r_{1},r_{2},...$ of rational numbers it satisfies that: $\prod_{i=1}^ {k}r_{i}=\sum_{i=1}^{k} r_{i}$. For all natural k. Show that $\frac{1}{r_{n}}-\frac{3}{4}$ is a square of rationale number for all natural $n\geq3$

1962 Putnam, A6

Let $S$ be a set of rational numbers such that whenever $a$ and $b$ are members of $S$, so are $ab$ and $a+b$, and having the property that for every rational number $r$ exactly one of the following three statements is true: $$r\in S,\;\; -r\in S,\;\;r =0.$$ Prove that $S$ is the set of all positive rational numbers.

2019 Thailand TST, 2

Given any set $S$ of positive integers, show that at least one of the following two assertions holds: (1) There exist distinct finite subsets $F$ and $G$ of $S$ such that $\sum_{x\in F}1/x=\sum_{x\in G}1/x$; (2) There exists a positive rational number $r<1$ such that $\sum_{x\in F}1/x\neq r$ for all finite subsets $F$ of $S$.

2011 IFYM, Sozopol, 8

Let $a$ and $b$ be some rational numbers and there exist $n$, such that $\sqrt[n]{a}+\sqrt[b]{b}$ is also a rational number. Prove that $\sqrt[n]{a}$ is a rational number.

PEN F Problems, 14

Let $k$ and $m$ be positive integers. Show that \[S(m, k)=\sum_{n=1}^{\infty}\frac{1}{n(mn+k)}\] is rational if and only if $m$ divides $k$.

2006 MOP Homework, 1

Let $S$ be a set of rational numbers with the following properties: (a) $\frac12$ is an element in $S$, (b) if $x$ is in $S$, then both $\frac{1}{x+1}$ and $\frac{x}{x+1}$ are in $S$. Prove that $S$ contains all rational numbers in the interval $(0, 1)$.

2018 Brazil Team Selection Test, 1

The numbers $1- \sqrt{2}$, $\sqrt{2}$ and $1+\sqrt{2}$ are written on a blackboard. Every minute, if $x, y, z$ are the numbers written, then they are erased and the numbers, $x^2 + xy + y^2$, $y^2 + yz + z^2$ and $z^2 + zx + x^2$ are written. Determine whether it is possible for all written numbers to be rational numbers after a finite number of minutes.

PEN F Problems, 6

Let $x, y, z$ non-zero real numbers such that $xy$, $yz$, $zx$ are rational. [list=a] [*] Show that the number $x^{2}+y^{2}+z^{2}$ is rational. [*] If the number $x^{3}+y^{3}+z^{3}$ is also rational, show that $x$, $y$, $z$ are rational. [/list]

1986 IMO Longlists, 67

Let $f(x) = x^n$ where $n$ is a fixed positive integer and $x =1, 2, \cdots .$ Is the decimal expansion $a = 0.f (1)f(2)f(3) . . .$ rational for any value of $n$ ? The decimal expansion of a is defined as follows: If $f(x) = d_1(x)d_2(x) \cdots d_{r(x)}(x)$ is the decimal expansion of $f(x)$, then $a = 0.1d_1(2)d_2(2) \cdots d_{r(2)}(2)d_1(3) . . . d_{r(3)}(3)d_1(4) \cdots .$